Marje Prank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4445347/publications.pdf Version: 2024-02-01

MADIE DOANK

#	Article	IF	CITATIONS
1	The effect of marine ice-nucleating particles on mixed-phase clouds. Atmospheric Chemistry and Physics, 2022, 22, 3763-3778.	4.9	2
2	Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	232
3	Ejection of Dust From the Ocean as a Potential Source of Marine Ice Nucleating Particles. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033073.	3.3	17
4	Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations. Science of the Total Environment, 2019, 688, 1263-1274.	8.0	40
5	Aerosol optical properties over Europe: an evaluation of the AQMEII Phase 3 simulations against satellite observations. Atmospheric Chemistry and Physics, 2019, 19, 2965-2990.	4.9	17
6	Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmospheric Chemistry and Physics, 2019, 19, 7019-7053.	4.9	68
7	Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions. Atmospheric Chemistry and Physics, 2019, 19, 181-204.	4.9	24
8	Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environmental Research Letters, 2019, 14, 124053.	5.2	47
9	Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nature Communications, 2018, 9, 406.	12.8	279
10	Modeled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection. Atmospheric Chemistry and Physics, 2018, 18, 10199-10218.	4.9	47
11	Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. Atmospheric Chemistry and Physics, 2018, 18, 5967-5989.	4.9	68
12	Influence of anthropogenic emissions and boundary conditions on multi-model simulations of major air pollutants over Europe and North America in the framework of AQMEII3. Atmospheric Chemistry and Physics, 2018, 18, 8929-8952.	4.9	32
13	Evaluation of Organic Aerosol and Its Precursors in the SILAM Model. Springer Proceedings in Complexity, 2018, , 565-570.	0.3	2
14	Alder pollen in Finland ripens after a short exposure to warm days in early spring, showing biennial variation in the onset of pollen ripening. Agricultural and Forest Meteorology, 2017, 247, 408-413.	4.8	6
15	Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown. Atmospheric Chemistry and Physics, 2017, 17, 3001-3054.	4.9	69
16	Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook. Atmospheric Chemistry and Physics, 2017, 17, 12341-12360.	4.9	25
17	Mortality due to Vegetation Fire–Originated PM _{2.5} Exposure in Europe—Assessment for the Years 2005 and 2008. Environmental Health Perspectives, 2017, 125, 30-37.	6.0	52
18	Costs and benefits of low-sulphur fuel standard for Baltic Sea shipping. Journal of Environmental Management, 2016, 184, 431-440.	7.8	41

Marje Prank

#	Article	IF	CITATIONS
19	Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005. Atmospheric Chemistry and Physics, 2016, 16, 6041-6070.	4.9	34
20	First comparison of symptom data with allergen content (Bet v 1 and Phl p 5 measurements) and pollen data from four European regions during 2009–2011. Science of the Total Environment, 2016, 548-549, 229-235.	8.0	41
21	Increasing the Number of Allergenic Pollen Species in SILAM Forecasts. Springer Proceedings in Complexity, 2016, , 313-317.	0.3	3
22	Evaluation of Simulated Particulate Matter Spread in 2010 Russian Wildfire Case Using Air Quality Monitoring Data. Springer Proceedings in Complexity, 2016, , 547-551.	0.3	0
23	Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. Journal of Allergy and Clinical Immunology, 2015, 136, 87-95.e6.	2.9	155
24	CTM: Numerical Recipes and Their Implementations. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 425-428.	0.2	0
25	An Assessment of the Emission and Dispersion of Volcanic Ash and Sulphur Dioxide in the Recent Eruptions in Iceland. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 297-301.	0.2	0
26	An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricultural and Forest Meteorology, 2013, 182-183, 43-53.	4.8	93
27	Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations. Atmospheric Environment, 2012, 53, 15-37.	4.1	111
28	Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmospheric Environment, 2012, 53, 60-74.	4.1	192
29	Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmospheric Environment, 2012, 55, 496-505.	4.1	141
30	Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII. Atmospheric Environment, 2012, 53, 75-92.	4.1	214
31	A regional-to-global model of emission and transport of sea salt particles in the atmosphere. Journal of Geophysical Research, 2011, 116, .	3.3	109
32	The Origins and Formation Mechanisms of Aerosol during a Measurement Campaign in Finnish Lapland, Evaluated Using the Regional Dispersion Model SILAM. NATO Security Through Science Series C: Environmental Security, 2008, , 530-538.	0.1	4
33	A Suggested Correction to the EMEP Database, Regarding the Location of a Major Industrial Air Pollution Source in Kola Peninsula. NATO Security Through Science Series C: Environmental Security, 2008, , 331-338.	0.1	0
34	Impacts of Climate Change on Aeroallergen Dispersion, Transport, and Deposition. , 0, , 50-73.		4
35	APPLICATIONS OF MESOSCALE MODELS FOR AIR POLLUTION RESEARCH. , 0, , 161-198.		Ο