Seyed Kamaledin Setarehdan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/444528/seyed-kamaledin-setarehdan-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 643 11 23 g-index

67 844 3.1 4.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
62	Dynamic causal modeling of evoked responses during emergency braking: an ERP study <i>Cognitive Neurodynamics</i> , 2022 , 16, 353-363	4.2	
61	Subcutaneous adipose tissue thickness determination using ultrasound signals processing: A phantom study. <i>Biomedical Signal Processing and Control</i> , 2022 , 77, 103744	4.9	
60	Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks. <i>Diagnostics</i> , 2021 , 11,	3.8	6
59	Optimal sub-harmonic injection-locked MICS band transmitter for wireless CW-fNIRS systems. <i>International Journal of Circuit Theory and Applications</i> , 2021 , 49, 3186	2	1
58	A robust time delay estimation method for ultrasonic echo signals and elastography. <i>Computers in Biology and Medicine</i> , 2021 , 136, 104653	7	1
57	Performance assessment of high-density diffuse optical topography regarding source-detector array topology. <i>PLoS ONE</i> , 2020 , 15, e0230206	3.7	2
56	Emotion recognition using EEG phase space dynamics and Poincare intersections. <i>Biomedical Signal Processing and Control</i> , 2020 , 59, 101918	4.9	5
55	The 2017 and 2018 Iranian Brain-Computer Interface Competitions. <i>Journal of Medical Signals and Sensors</i> , 2020 , 10, 208-216	1	1
54	The Effective Brain Areas in Recognition of Dyslexia. <i>International Clinical Neuroscience Journal</i> , 2020 , 7, 147-152	0.3	
53	Quality analysis of heart rate derived from functional near-infrared spectroscopy in stress assessment. <i>Informatics in Medicine Unlocked</i> , 2020 , 18, 100286	5.3	5
52	Performance assessment of high-density diffuse optical topography regarding source-detector array topology 2020 , 15, e0230206		
51	Performance assessment of high-density diffuse optical topography regarding source-detector array topology 2020 , 15, e0230206		
50	Performance assessment of high-density diffuse optical topography regarding source-detector array topology 2020 , 15, e0230206		
49	Performance assessment of high-density diffuse optical topography regarding source-detector array topology 2020 , 15, e0230206		
48	Performance assessment of high-density diffuse optical topography regarding source-detector array topology 2020 , 15, e0230206		
47	IQ estimation by means of EEG-fNIRS recordings during a logical-mathematical intelligence test. <i>Computers in Biology and Medicine</i> , 2019 , 110, 218-226	7	8
46	A novel EEG-based approach to classify emotions through phase space dynamics. <i>Signal, Image and Video Processing</i> , 2019 , 13, 1149-1156	1.6	10

Hypotheses, 2019 , 127, 34-45	3.8	20	
Enhancement of optical penetration depth of LED-based NIRS systems by comparing different beam profiles. <i>Biomedical Physics and Engineering Express</i> , 2019 , 5, 065004	1.5	5	
Accurate Stress Assessment based on functional Near Infrared Spectroscopy using Deep Learning Approach 2019 ,		1	
Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks. <i>Journal of Integrative Neuroscience</i> , 2018 , 17, 391-411	1.5	4	
CLASSIFICATION OF SCHIZOPHRENIA USING SVM VIA fNIRS. <i>Biomedical Engineering - Applications, Basis and Communications</i> , 2018 , 30, 1850008	0.6	9	
A NOVEL METHOD OF EEG-BASED EMOTION RECOGNITION USING NONLINEAR FEATURES VARIABILITY AND DEMPSTER HAFER THEORY. <i>Biomedical Engineering - Applications, Basis and Communications,</i> 2018 , 30, 1850026	0.6	10	
Modeling the connections of brain regions in children with autism using cellular neural networks and electroencephalography analysis. <i>Artificial Intelligence in Medicine</i> , 2018 , 89, 40-50	7.4	8	
Global optimal constrained ICA and its application in extraction of movement related cortical potentials from single-trial EEG signals. <i>Computer Methods and Programs in Biomedicine</i> , 2018 , 166, 155	-f69	3	
A Novel Approach to Mortality Prediction of ICU Cardiovascular Patient Based on Fuzzy Logic Method. <i>Biomedical Signal Processing and Control</i> , 2018 , 45, 160-173	4.9	9	
Stress assessment by means of heart rate derived from functional near-infrared spectroscopy. Journal of Biomedical Optics, 2018 , 23, 1-12	3.5	9	
Classification of Mental Stress Levels by Analyzing fNIRS Signal Using Linear and Non-linear Features. <i>International Clinical Neuroscience Journal</i> , 2018 , 5, 55-61	0.3	2	
Emotion Classification through Nonlinear EEG Analysis Using Machine Learning Methods. <i>International Clinical Neuroscience Journal</i> , 2018 , 5, 135-149	0.3	29	
Noninvasive Prediction of Renal Stone Surface Irregularities by Numerical Analysis of the Color Doppler Twinkling Artifact: An Ex Vivo Study. <i>Journal of Ultrasound in Medicine</i> , 2018 , 37, 1211-1224	2.9	О	
Estimation of the depth of anesthesia by using a multioutput least-square support vector regression. <i>Turkish Journal of Electrical Engineering and Computer Sciences</i> , 2018 , 26, 2793-2802	0.9	O	
A novel approach to emotion recognition using local subset feature selection and modified Dempster-Shafer theory. <i>Behavioral and Brain Functions</i> , 2018 , 14, 17	4.1	12	
Automatic anesthesia depth staging using entropy measures and relative power of electroencephalogram frequency bands. <i>Australasian Physical and Engineering Sciences in Medicine</i> , 2018 , 41, 919-929	1.9		
Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA. <i>Computers in Biology and Medicine</i> , 2018 , 99, 63-75	7	7	
Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model. <i>Computers in Biology and Medicine</i> , 2017 , 89, 561-572	7	13	
	Enhancement of optical penetration depth of LED-based NIRS systems by comparing different beam profiles. Biomedical Physics and Engineering Express, 2019, 5, 065004 Accurate Stress Assessment based on functional Near Infrared Spectroscopy using Deep Learning Approach 2019, Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks. Journal of Integrative Neuroscience, 2018, 17, 391-411 CLASSIFICATION OF SCHIZOPHRENIA USING SVM VIA FNIRS. Biomedical Engineering - Applications, Basis and Communications, 2018, 30, 1850008 A NOVEL METHOD OF EEG-BASED EMOTION RECOGNITION USING NONLINEAR FEATURES VARIABILITY AND DEMPSTERBHAFER THEORY. Biomedical Engineering - Applications, Basis and Communications, 2018, 30, 1850026 Modeling the connections of brain regions in children with autism using cellular neural networks and electroencephalography analysis. Artificial Intelligence in Medicine, 2018, 89, 40-50 Global optimal constrained ICA and its application in extraction of movement related cortical potentials from single-trial EEG signals. Computer Methods and Programs in Biomedicine, 2018, 166, 155 A Novel Approach to Mortality Prediction of ICU Cardiovascular Patient Based on Fuzzy Logic Method. Biomedical Signal Processing and Control, 2018, 45, 160-173 Stress assessment by means of heart rate derived from functional near-infrared spectroscopy. Journal of Biomedical Optics, 2018, 23, 1-12 Classification of Mental Stress Levels by Analyzing fNIRS Signal Using Linear and Non-linear Features. International Clinical Neuroscience Journal, 2018, 5, 135-149 Noninvasive Prediction of Renal Stone Surface Irregularities by Numerical Analysis of the Color Doppler Twinkling Artifact: An Ex Vivo Study. Journal of Ultrasound in Medicine, 2018, 37, 1211-1224 Estimation of the depth of anesthesia by using a multioutput least-square support vector regression. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26, 2793-2802 A novel approach to e	Enhancement of optical penetration depth of LED-based NIRS systems by comparing different beam profiles. Biomedical Physics and Engineering Express, 2019, 5, 065004 Accurate Stress Assessment based on functional Near Infrared Spectroscopy using Deep Learning Approach 2019, Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks. Journal of Integrative Neuroscience, 2018, 17, 391-411 1.5 CLASSIFICATION OF SCHIZOPHRENIA USING SVM VIA FNIRS. Biomedical Engineering - Applications, 2018, 30, 1850008 A NOVEL METHOD OF EEG-BASED EMOTION RECOGNITION USING NONLINEAR FEATURES VARIABILITY AND DEMPSTERBHAFER THEORY. Biomedical Engineering - Applications, Basis and Communications, 2018, 30, 1850026 Modeling the connections of brain regions in children with autism using cellular neural networks and electroencephalography analysis. Artificial Intelligence in Medicine, 2018, 89, 40-50 74 Global optimal constrained ICA and its application in extraction of movement related cortical potentials from single-trial EEG signals. Computer Methods and Programs in Biomedicine, 2018, 166, 155-169 A Novel Approach to Mortality Prediction of ICU Cardiovascular Patient Based on Fuzzy Logic Method. Biomedical Signal Processing and Control, 2018, 45, 160-173 Stress assessment by means of heart rate derived from functional near-infrared spectroscopy. Journal of Biomedical Optics, 2018, 23, 1-12 Classification of Mental Stress Levels by Analyzing fNIRS Signal Using Linear and Non-linear Features. International Clinical Neuroscience Journal, 2018, 5, 135-149 Noninvasive Prediction of Renal Stone Surface Irregularities by Numerical Analysis of the Color Doppler Twinkling Artifact: An Ex Vivo Study. Journal of Ultrasound in Medicine, 2018, 37, 1211-1224 2-9 Noninvasive Prediction of Renal Stone Surface Irregularities by Numerical Analysis of the Color Doppler Twinkling Artifact: An Ex Vivo Study. Journal of Ultrasound in Medicine, 2018, 37, 1211-1224 2-9 Estimation of	Enhancement of optical penetration depth of LED-based NIRS systems by comparing different beam profiles. Biomedical Physics and Engineering Express, 2019, 5, 065004 Accurate Stress Assessment based on functional Near Infrared Spectroscopy using Deep Learning Approach 2019, Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks. Journal of Integrative Neuroscience, 2018, 17, 391-411 LASSIFICATION OF SCHIZOPHRENIA USING SVM VIA FNIRS. Biomedical Engineering - Applications, Basis and Communications, 2018, 30, 1850008 A NOVEL METHOD OF EEG-BASED EMOTION RECOGNITION USING NONLINEAR FEATURES VARIABILITY AND DEMPSTERBHAFER THEORY. Biomedical Engineering - Applications, Basis and Communications, 2018, 30, 1850026 Modeling the connections of brain regions in children with autism using cellular neural networks and electroneophalography analysis. Artificial Intelligence in Medicine, 2018, 89, 40-50 Global optimal constrained ICA and its application in extraction of movement related cortical potentials from single-trial EEG signals. Computer Methods and Programs in Biomedicine, 2018, 166, 155-169 3 A Novel Approach to Mortality Prediction of ICU Cardiovascular Patient Based on Fuzzy Logic Method. Biomedical Signal Processing and Control, 2018, 45, 160-173 Stress assessment by means of heart rate derived from functional near-infrared spectroscopy. Journal of Biomedical Optics, 2018, 23, 1-12 Classification of Mental Stress Levels by Analyzing fNIRS Signal Using Linear and Non-linear Features. International Clinical Neuroscience Journal, 2018, 5, 135-149 Noninvasive Prediction of Renal Stone Surface Irregularities by Numerical Analysis of the Color Doppler Twinkling Artifact: An Ex Vivo Study. Journal of Ultrasound in Medicine, 2018, 37, 1211-1224 2-9 Cassification of the depth of anesthesia by using a multioutput least-square support vector regression. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26, 2793-2802 A novel ap

27	Finite element analysis of thermally actuated medical stent and staple implants using shape memory alloy. <i>International Journal of Nanotechnology</i> , 2017 , 14, 66	1.5	1
26	A new approach to estimating the evoked hemodynamic response applied to dual channel functional near infrared spectroscopy. <i>Computers in Biology and Medicine</i> , 2017 , 84, 9-19	7	8
25	Classification of fNIRS based brain hemodynamic response to mental arithmetic tasks 2017,		5
24	A Review on EEG Signals Based Emotion Recognition. <i>International Clinical Neuroscience Journal</i> , 2017 , 4, 118-129	0.3	29
23	Functional connectivity of the PFC via partial correlation. Optik, 2016, 127, 4748-4754	2.5	11
22	THE EFFECTIVENESS OF MUSIC ON HUMAN BIOLOGICAL SIGNALS. <i>Biomedical Engineering - Applications, Basis and Communications</i> , 2016 , 28, 1650002	0.6	2
21	Effective channels in classification and functional connectivity pattern of prefrontal cortex by functional near infrared spectroscopy signals. <i>Optik</i> , 2016 , 127, 3271-3275	2.5	11
20	Non-linear feature extraction from HRV signal for mortality prediction of ICU cardiovascular patient. <i>Journal of Medical Engineering and Technology</i> , 2016 , 40, 87-98	1.8	20
19	Analysis of heart rate variability as a predictor of mortality in cardiovascular patients of intensive care unit. <i>Biocybernetics and Biomedical Engineering</i> , 2015 , 35, 217-226	5.7	15
18	Attention level quantification during a modified stroop color word experiment: an fNIRS based study 2015 ,		6
17	Analysis of backscattered ultrasound rf echoes from adjacent scan lines for surface roughness characterization: a phantom study 2015 ,		1
16	AUTOMATIC AND CONCURRENT DETERMINATION OF OPTIMAL VALUES OF NONLOCAL MEANS FILTERING PARAMETERS BASED ON BAYESIAN FORMULATION IN IVUS IMAGES. <i>Biomedical Engineering - Applications, Basis and Communications,</i> 2015 , 27, 1550052	0.6	
15	New algorithm of mortality risk prediction for cardiovascular patients admitted in intensive care unit. <i>International Journal of Clinical and Experimental Medicine</i> , 2015 , 8, 8916-26		8
14	Study of the effects of age and body mass index on the carotid wall vibration: extraction methodology and analysis. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2014 , 228, 714-29	1.7	5
13	A novel approach for quantification and analysis of the color Doppler twinkling artifact with application in noninvasive surface roughness characterization: an in vitro phantom study. <i>Journal of Ultrasound in Medicine</i> , 2014 , 33, 597-610	2.9	7
12	Evoked hemodynamic response estimation using ensemble empirical mode decomposition based adaptive algorithm applied to dual channel functional near infrared spectroscopy (fNIRS). <i>Journal of Neuroscience Methods</i> , 2014 , 224, 13-25	3	11
11	Measuring the effect of aging on vibrations of the carotid artery wall using empirical mode decomposition method. <i>Journal of Medical Signals and Sensors</i> , 2014 , 4, 27-34	1	
10	An IVUS image-based approach for improvement of coronary plaque characterization. <i>Computers in Biology and Medicine</i> , 2013 , 43, 268-80	7	17

LIST OF PUBLICATIONS

9	estimator 2013 ,		4
8	DFA- and DWT- based features of HRV signal for automatic sleep staging 2012 ,		3
7	Appropriate twinkling frequency and inter-sources distance selection in SSVEP-based HCI systems 2011 ,		6
6	Type2 fuzzy set based automatic shadow region segmentation in intra vascular ultrasound images 2011 ,		4
5	Simulation of the twinkling artifact in color flow Doppler sonography: A phase noise hypothesis validation 2011 ,		2
4	Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. <i>Artificial Intelligence in Medicine</i> , 2008 , 44, 51-64	7.4	219
3	A novel algorithm for straightening highly curved images of human chromosome. <i>Pattern Recognition Letters</i> , 2008 , 29, 1208-1217	4.7	16
2	New features for automatic classification of human chromosomes: A feasibility study. <i>Pattern Recognition Letters</i> , 2006 , 27, 19-28	4.7	49
7	Fuzzy-based purest wavelength selection from spectral data. Journal of Chamometrics 2006, 20, 239-246	- -	2