Mathieu Boccard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4444145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carrierâ€selective contacts using metal compounds for crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2023, 31, 380-413.	8.1	33
2	Temperatureâ€dependent performance of silicon heterojunction solar cells with transitionâ€metalâ€oxideâ€based selective contacts. Progress in Photovoltaics: Research and Applications, 2022, 30, 981-993.	8.1	6
3	Monocrystalline 1.7-eV MgCdTe solar cells. Journal of Applied Physics, 2022, 131, 023107.	2.5	Ο
4	Transferability of the Light-Soaking Benefits on Silicon Heterojunction Cells to Module. IEEE Journal of Photovoltaics, 2022, 12, 662-668.	2.5	6
5	Status and perspectives of crystalline silicon photovoltaics in research and industry. Nature Reviews Materials, 2022, 7, 597-616.	48.7	139
6	Bottom-Up and Top-Down Approaches for Identifying and Mitigating Electrical Losses in Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 906-914.	2.5	1
7	Hole-Selective Front Contact Stack Enabling 24.1%-Efficient Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 9-15.	2.5	11
8	Effects of Work Function and Electron Affinity on the Performance of Carrier-Selective Contacts in Silicon Solar Cells Using ZnSn _{\$_ext{} x \$} Ge _{\$_ext{} 1-x \$} N\$_ext{2}\$ as a Case Study. IEEE Journal of Photovoltaics, 2021, 11, 1350-1357.	2.5	5
9	Dopantâ€Free Bifacial Silicon Solar Cells. Solar Rrl, 2021, 5, 2000771.	5.8	11
10	Evaluating Materials Design Parameters of Hole-Selective Contacts for Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 247-258.	2.5	7
11	Advanced method for electrical characterization of carrier-selective passivating contacts using transfer-length-method measurements under variable illumination. Journal of Applied Physics, 2021, 129, .	2.5	7
12	Influence of Light Soaking on Silicon Heterojunction Solar Cells With Various Architectures. IEEE Journal of Photovoltaics, 2021, 11, 575-583.	2.5	33
13	ZnSnxGe1-xN2 as electron-selective contact for silicon heterojunction solar cells. , 2021, , .		0
14	Influence of the Dopant Gas Precursor in P-Type Nanocrystalline Silicon Layers on the Performance of Front Junction Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 944-956.	2.5	9
15	Performance Limitations and Analysis of Silicon Heterojunction Solar Cells Using Ultra-Thin MoO _x Hole-Selective Contacts. IEEE Journal of Photovoltaics, 2021, 11, 1158-1166.	2.5	8
16	Palliating the efficiency loss due to shunting in perovskite/silicon tandem solar cells through modifying the resistive properties of the recombination junction. Sustainable Energy and Fuels, 2021, 5, 2036-2045.	4.9	10
17	Contact Resistivity of the p-Type Amorphous Silicon Hole Contact in Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 54-62.	2.5	34
18	Mitigating Plasmonic Absorption Losses at Rear Electrodes in Highâ€Efficiency Silicon Solar Cells Using Dopantâ€Free Contact Stacks. Advanced Functional Materials, 2020, 30, 1907840.	14.9	55

#	Article	IF	CITATIONS
19	Dopantâ€Free Backâ€Contacted Silicon Solar Cells with an Efficiency of 22.1%. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900688.	2.4	27
20	High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Materials Science and Engineering Reports, 2020, 142, 100579.	31.8	139
21	Degradation Mechanism and Stability Improvement of Dopant-Free ZnO/LiF <i>_x</i> /Al Electron Nanocontacts in Silicon Heterojunction Solar Cells. ACS Applied Nano Materials, 2020, 3, 11391-11398.	5.0	18
22	Influence of the Subcell Properties on the Fill Factor of Two-Terminal Perovskite–Silicon Tandem Solar Cells. ACS Energy Letters, 2020, 5, 1077-1082.	17.4	49
23	Lateral transport in silicon solar cells. Journal of Applied Physics, 2020, 127, .	2.5	32
24	Influence of local surface defects on the minority-carrier lifetime of passivating-contact solar cells. Applied Physics Letters, 2020, 116, 113901.	3.3	3
25	Design Rules to Fully Benefit From Bifaciality in Two-Terminal Perovskite/Silicon Tandem Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 714-721.	2.5	18
26	Illumination-Dependent Requirements for Heterojunctions and Carrier-Selective Contacts on Silicon. IEEE Journal of Photovoltaics, 2020, 10, 1214-1225.	2.5	1
27	23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy, 2020, 70, 104495.	16.0	179
28	Annealing of Silicon Heterojunction Solar Cells: Interplay of Solar Cell and Indium Tin Oxide Properties. IEEE Journal of Photovoltaics, 2019, 9, 1202-1207.	2.5	37
29	Passivation, conductivity, and selectivity in solar cell contacts: Concepts and simulations based on a unified partial-resistances framework. Journal of Applied Physics, 2019, 126, .	2.5	49
30	Optimized Design of Silicon Heterojunction Solar Cells for Field Operating Conditions. IEEE Journal of Photovoltaics, 2019, 9, 1541-1547.	2.5	9
31	Impact of the oxygen content on the optoelectronic properties of the indium-tin-oxide based transparent electrodes for silicon heterojunction solar cells. AIP Conference Proceedings, 2019, , .	0.4	5
32	Silicon Nitride Barrier Layers Mitigate Minority-Carrier Lifetime Degradation in Silicon Wafers During Simulated MBE Growth of Ill–V Layers. IEEE Journal of Photovoltaics, 2019, 9, 431-436.	2.5	6
33	Record-Efficiency n-Type and High-Efficiency p-Type Monolike Silicon Heterojunction Solar Cells with a High-Temperature Gettering Process. ACS Applied Energy Materials, 2019, 2, 4900-4906.	5.1	13
34	Low-Temperature \$p\$-Type Microcrystalline Silicon as Carrier Selective Contact for Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1158-1165.	2.5	33
35	25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a <i>p</i> -type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts. ACS Energy Letters, 2019, 4, 844-845.	17.4	152
36	Exploring co-sputtering of ZnO:Al and SiO2 for efficient electron-selective contacts on silicon solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 67-73.	6.2	23

#	Article	IF	CITATIONS
37	Injection-dependent lateral resistance in front-junction solar cells with nc-Si:H and a-Si:H hole selective contact. , 2019, , .		3
38	Corrections to "Highly Conductive and Broadband Transparent Zr-Doped In2O3 as Front Electrode for Solar Cells―[Sep 18 1202-1207]. IEEE Journal of Photovoltaics, 2019, 9, 1155-1155.	2.5	0
39	Gallium Nitride as Transparent Electron-Selective Contact in Silicon Heterojunction Solar Cells. , 2019, , .		4
40	Development of N-Type Amorphous and Microcrystalline Hydrogenated Silicon-Oxides (SiOx:H) and Investigation of their Impact as Window Layers on Silicon Heterojunction Solar Cells Device. , 2019, , .		1
41	Zr-doped indium oxide electrodes: Annealing and thickness effects on microstructure and carrier transport. Physical Review Materials, 2019, 3, .	2.4	23
42	Toward Annealingâ€Stable Molybdenumâ€Oxideâ€Based Holeâ€Selective Contacts For Silicon Photovoltaics. Solar Rrl, 2018, 2, 1700227.	5.8	42
43	Amorphous gallium oxide grown by low-temperature PECVD. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 021518.	2.1	13
44	Monocrystalline 1.7-eV-Bandgap MgCdTe Solar Cell With 11.2% Efficiency. IEEE Journal of Photovoltaics, 2018, 8, 581-586.	2.5	9
45	Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%. ACS Energy Letters, 2018, 3, 508-513.	17.4	164
46	The amazing improvement of silicon heterojunction technology: ready for a true mass market launch. , 2018, , .		6
47	Hybrid sequential deposition process for fully textured perovskite/silicon tandem solar cells. , 2018, ,		2
48	Highly Conductive and Broadband Transparent Zr-Doped In ₂ O ₃ as Front Electrode for Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1202-1207.	2.5	46
49	Nanocrystalline silicon oxide stacks for silicon heterojunction solar cells for hot climates. AIP Conference Proceedings, 2018, , .	0.4	8
50	Silicon oxide treatment to promote crystallinity of p-type microcrystalline layers for silicon heterojunction solar cells. AIP Conference Proceedings, 2018, , .	0.4	10
51	Nitride layer screening as carrier-selective contacts for silicon heterojunction solar cells. AIP Conference Proceedings, 2018, , .	0.4	8
52	22% efficient dopant-free interdigitated back contact silicon solar cells. AIP Conference Proceedings, 2018, , .	0.4	20
53	Reassessment of cell to module gains and losses: Accounting for the current boost specific to cells located on the edges. AIP Conference Proceedings, 2018, , .	0.4	5
54	Silicon heterojunction solar cells: Recent technological development and practical aspects - from lab to industry. Solar Energy Materials and Solar Cells, 2018, 187, 140-153.	6.2	159

#	Article	IF	CITATIONS
55	Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17, 820-826.	27.5	1,046
56	23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2, .	39.5	1,204
57	Monocrystalline CdTe/MgCdTe Double-Heterostructure Solar Cells With ZnTe Hole Contacts. IEEE Journal of Photovoltaics, 2017, 7, 307-312.	2.5	9
58	Lowâ€refractiveâ€index nanoparticle interlayers to reduce parasitic absorption in metallic rear reflectors of solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700179.	1.8	12
59	Loss Analysis of Monocrystalline CdTe Solar Cells With 20% Active-Area Efficiency. IEEE Journal of Photovoltaics, 2017, 7, 900-905.	2.5	23
60	Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment. Energy Procedia, 2017, 124, 331-337.	1.8	5
61	MoOx and WOx based hole-selective contacts for wafer-based Si solar cells. , 2017, , .		4
62	Properties of hydrogenated indium oxide prepared by reactive sputtering with hydrogen gas. , 2016, , .		1
63	Crystalline silicon passivation with amorphous silicon carbide layers. , 2016, , .		0
64	Passivation and carrier selectivity of TiO <inf>2</inf> contacts combined with different passivation layers and electrodes for silicon solar cells. , 2016, , .		11
65	Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells. Applied Physics Letters, 2016, 109, .	3.3	22
66	CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates. Applied Physics Letters, 2016, 109, .	3.3	8
67	1.7 eV MgCdTe double-heterostructure solar cells for tandem device applications. , 2016, , .		2
68	Monocrystalline CdTe/MgCdTe double-heterostructure solar cells with a ZnTe hole-contact and passivation layer. , 2016, , .		2
69	Hetero-emitter GaP/Si solar cells with high Si bulk lifetime. , 2016, , .		14
70	High-mobility Hydrogenated Indium Oxide without Introducing Water During Sputtering. Energy Procedia, 2016, 92, 297-303.	1.8	16
71	ITO/SiOx:H stacks for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 98-101.	6.2	52
72	Efficient Semitransparent Perovskite Solar Cells for 23.0%â€Efficiency Perovskite/Silicon Fourâ€Terminal Tandem Cells. Advanced Energy Materials, 2016, 6, 1601128.	19.5	240

#	Article	IF	CITATIONS
73	Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%. Nature Energy, 2016, 1, .	39.5	172
74	Comparison of amorphous silicon absorber materials: Kinetics of lightâ€induced degradation. Progress in Photovoltaics: Research and Applications, 2016, 24, 446-457.	8.1	15
75	Evaluation of metal oxides prepared by reactive sputtering as carrier-selective contacts for crystalline silicon solar cells. , 2015, , .		9
76	Carrier-selective contacts in silicon solar cells. , 2015, , .		5
77	Microcrystalline silicon solar cells with passivated interfaces for high openâ€circuit voltage. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 840-845.	1.8	11
78	Light trapping in solar cells: numerical modeling with measured surface textures. Optics Express, 2015, 23, A539.	3.4	9
79	Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells. Journal of Applied Physics, 2015, 118, .	2.5	56
80	Recent advances and remaining challenges in thin-film silicon photovoltaic technology. Materials Today, 2015, 18, 378-384.	14.2	83
81	Silver versus white sheet as a back reflector for microcrystalline silicon solar cells deposited on LPCVDâ€ZnO electrodes of various textures. Progress in Photovoltaics: Research and Applications, 2015, 23, 1182-1189.	8.1	18
82	High-Stable-Efficiency Tandem Thin-Film Silicon Solar Cell With Low-Refractive-Index Silicon-Oxide Interlayer. IEEE Journal of Photovoltaics, 2014, 4, 1368-1373.	2.5	52
83	Post-deposition treatment of microcrystalline silicon solar cells for improved performance on rough superstrates. Journal of Applied Physics, 2014, 116, 244504.	2.5	0
84	Self-Patterned Nanoparticle Layers for Vertical Interconnects: Application in Tandem Solar Cells. Nano Letters, 2014, 14, 5085-5091.	9.1	17
85	2-D Periodic and Random-on-Periodic Front Textures for Tandem Thin-Film Silicon Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1177-1184.	2.5	18
86	Micromorph silicon solar cell optical performance: Influence of intermediate reflector and front electrode surface texture. Solar Energy Materials and Solar Cells, 2014, 130, 401-409.	6.2	18
87	Thin-Film Silicon Triple-Junction Solar Cells on Highly Transparent Front Electrodes With Stabilized Efficiencies up to 12.8%. IEEE Journal of Photovoltaics, 2014, 4, 757-762.	2.5	30
88	The role of front and back electrodes in parasitic absorption in thin-film solar cells. EPJ Photovoltaics, 2014, 5, 50601.	1.6	4
89	Optimized short-circuit current mismatch in multi-junction solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 120-125.	6.2	65
90	On the Interplay Between Microstructure and Interfaces in High-Efficiency Microcrystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 11-16.	2.5	29

#	Article	IF	CITATIONS
91	Optimization of the Asymmetric Intermediate Reflector Morphology for High Stabilized Efficiency Thin n-i-p Micromorph Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 41-45.	2.5	7
92	New progress in the fabrication of n–i–p micromorph solar cells for opaque substrates. Solar Energy Materials and Solar Cells, 2013, 114, 147-155.	6.2	29
93	Smoothening intermediate reflecting layer for tandem thin-film silicon solar cells. Solar Energy Materials and Solar Cells, 2013, 119, 12-17.	6.2	11
94	Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production. Nano Letters, 2013, 13, 5615-5618.	9.1	151
95	Highâ€efficiency microcrystalline silicon singleâ€junction solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 821-826.	8.1	90
96	Current matching optimization in high-efficiency thin-film silicon tandem solar cells. , 2013, , .		8
97	Optimization of the asymmetric intermediate reflector morphology for high stabilized efficiency thin n-i-p micromorph solar cells. , 2013, , .		Ο
98	On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells. , 2013, , .		0
99	Innovative Device Architecture for High Efficiency Thin Film Silicon Solar Cells. Materials Research Society Symposia Proceedings, 2012, 1426, 131-135.	0.1	0
100	Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?. Journal of Applied Physics, 2012, 112, .	2.5	30
101	Nanometer- and Micrometer-Scale Texturing for High-Efficiency Micromorph Thin-Film Silicon Solar Cells. IEEE Journal of Photovoltaics, 2012, 2, 83-87.	2.5	25
102	New Generation Transparent LPCVD ZnO Electrodes for Enhanced Photocurrent in Micromorph Solar Cells and Modules. IEEE Journal of Photovoltaics, 2012, 2, 88-93.	2.5	11
103	Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-Film Si Solar Cells. IEEE Journal of Photovoltaics, 2012, 2, 229-235.	2.5	42
104	Latest Developments of High-Efficiency Micromorph Tandem Silicon Solar Cells Implementing Innovative Substrate Materials and Improved Cell Design. IEEE Journal of Photovoltaics, 2012, 2, 236-240.	2.5	15
105	Optimization of the asymmetric intermediate reflector morphology for high stabilized efficiency thin n-i-p micromorph solar cells. , 2012, , .		0
106	Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells. Nano Letters, 2012, 12, 1344-1348.	9.1	127
107	On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells. , 2012, , .		0

108 Light harvesting schemes for high efficiency thin film silicon solar cells. , 2012, , .

2

#	Article	IF	CITATIONS
109	Light Trapping in Solar Cells: Can Periodic Beat Random?. ACS Nano, 2012, 6, 2790-2797.	14.6	480
110	Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells. Energy Procedia, 2012, 15, 206-211.	1.8	9
111	Light trapping in solar cells: Analytical modeling. Applied Physics Letters, 2012, 101, .	3.3	31
112	Highly transparent ZnO bilayers by LP-MOCVD as front electrodes for thin-film micromorph silicon solar cells. Solar Energy Materials and Solar Cells, 2012, 98, 331-336.	6.2	38
113	Variable light biasing method to measure component l–V characteristics of multi-junction solar cells. Solar Energy Materials and Solar Cells, 2012, 103, 128-133.	6.2	15
114	Silicon Filaments in Silicon Oxide for Nextâ€Generation Photovoltaics. Advanced Materials, 2012, 24, 1182-1186.	21.0	118
115	Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells. Nano Letters, 2011, 11, 661-665.	9.1	171
116	Optimization of thin film silicon solar cells on highly textured substrates. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1863-1868.	1.8	82
117	Back Cover: Optimization of thin film silicon solar cells on highly textured substrates (Phys. Status) Tj ETQq1 1 0.	784314 rg	gBT /Overloci
118	Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 195-198.	6.2	31
119	Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes. Journal of Applied Physics, 2011, 109, .	2.5	43
120	Advanced nanostructured materials for pushing light trapping towards the Yablonovitch limit. , 2011, , .		0
121	Unlinking absorption and haze in thin film silicon solar cells front electrodes. Physica Status Solidi - Rapid Research Letters, 2010, 4, 326-328.	2.4	28
122	Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting. Applied Physics Letters, 2010, 96, .	3.3	63
123	Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells. Applied Physics Letters, 2010, 97, .	3.3	119
124	Hybrid Fabrication Method for High Efficiency Monolithic Perovskite/Silicon Tandem Solar Cells. , 0, ,		0
125	A nanometric view on performance-loss mechanisms in perovskite/c-Si multi-junction solar cells. , 0, , .		0