
## Srecko Manasijevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4443946/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF       | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| 1  | Thermal analysis and microscopic characterization of the piston alloy AlSi13Cu4Ni2Mg. Intermetallics, 2011, 19, 486-492.                                                                                    | 3.9      | 66             |
| 2  | Optimization of the Gating System for Sand Casting Using Genetic Algorithm. International Journal of Metalcasting, 2017, 11, 255-265.                                                                       | 1.9      | 21             |
| 3  | Al-Fin Bond in Aluminum Piston Alloy & Austenitic Cast Iron Insert. International Journal of Metalcasting, 2015, 9, 27-32.                                                                                  | 1.9      | 18             |
| 4  | Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency. Advances in Materials Science and Engineering, 2013, 2013, 1-8.                                       | 1.8      | 16             |
| 5  | Application of Machine Learning in the Control of Metal Melting Production Process. Applied Sciences (Switzerland), 2020, 10, 6048.                                                                         | 2.5      | 14             |
| 6  | CASTING IMPROVEMENT BASED ON METAHEURISTIC OPTIMIZATION AND NUMERICAL SIMULATION. Facta Universitatis, Series: Mechanical Engineering, 2017, 15, 397.                                                       | 4.6      | 14             |
| 7  | Optimisation of cast pistons made of Al–Si piston alloy. International Journal of Cast Metals<br>Research, 2013, 26, 255-261.                                                                               | 1.0      | 9              |
| 8  | Determination some thermo-physical and metallurgical properties of aluminum alloys using their known chemical composition. International Journal of Heat and Mass Transfer, 2019, 139, 548-553.             | 4.8      | 7              |
| 9  | Influence of different contents of Si and Cu on the solidification pathways of cast hypoeutectic<br>Al-(5–9)Si-(1–4)Cu (wt.%) alloys. International Journal of Materials Research, 2013, 104, 865-873.      | 0.3      | 5              |
| 10 | Heavy metal ions in the wastewater of the Majdanpek Copper Mine. Materials Protection, 2015, 56, 52-58.                                                                                                     | 0.9      | 5              |
| 11 | Intelligent system for automatic control of the process of filling the mold. International Journal of Advanced Manufacturing Technology, 2017, 90, 2223-2231.                                               | 3.0      | 4              |
| 12 | Impact of major alloying elements on the solodification parameters of cast hypoeutectic AlSi6Cu (1–4) Tj ETQ                                                                                                | 9000 rgE | 3T /Overlock 1 |
| 13 | An Analysis of Intermetallic Bonding between a Ring Carrier and an Aluminum Piston Alloy.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45,<br>4580-4587. | 2.2      | 2              |
| 14 | The intermetallic bonding between a ring carrier and aluminum piston alloy. Revista De Metalurgia,<br>2015, 51, e048.                                                                                       | 0.5      | 2              |
| 15 | Casting Process Improvement by the Application of Artificial Intelligence. Applied Sciences<br>(Switzerland), 2022, 12, 3264.                                                                               | 2.5      | 2              |
| 16 | Rationalization of a Core Warehouse in the Casting Plant: A Case Study. Transactions of Famena, 2020,<br>43, 109-121.                                                                                       | 0.6      | 1              |
| 17 | Quantification of Feeding Regions of Hypoeutectic Al-(5, 7, 9)Si-(0-4)Cu (wt.%) Alloys Using Cooling<br>Curve Analysis. , 2020, , .                                                                         |          | 1              |
| 18 | Programming methodology for multi-axis CNC woodworking machining center for advanced                                                                                                                        | 2.3      | 1              |

| 18 | riogramming methodology for multi axis cive woodworking machining center for advanced     |  |
|----|-------------------------------------------------------------------------------------------|--|
| 10 | manufacturing based on STEP-NC. Wood Material Science and Engineering, 2023, 18, 630-639. |  |
|    |                                                                                           |  |

2

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Conventional methods of piston surface treatment for IC engines. Materials Protection, 2014, 55, 95-98.                                                           | 0.9 | 0         |
| 20 | pH value and concentrations of total dry residue and suspended matter in the wastewater of the<br>Majdanpek Copper mine. Materials Protection, 2014, 55, 327-334. | 0.9 | 0         |