Matthias J Koepp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4443853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study. NeuroImage, 2006, 32, 388-399.	4.2	373
2	Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain, 2010, 133, 1186-1199.	7.6	250
3	Brain imaging in the assessment for epilepsy surgery. Lancet Neurology, The, 2016, 15, 420-433.	10.2	239
4	Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain, 2016, 139, 2441-2455.	7.6	193
5	Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study. Brain, 2011, 134, 1710-1719.	7.6	192
6	Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia, 2019, 60, 1054-1068.	5.1	184
7	Prediction of late seizures after ischaemic stroke with a novel prognostic model (the SeLECT score): a multivariable prediction model development and validation study. Lancet Neurology, The, 2018, 17, 143-152.	10.2	178
8	Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain, 2012, 135, 3635-3644.	7.6	159
9	Abnormalities of language networks in temporal lobe epilepsy. NeuroImage, 2007, 36, 209-221.	4.2	157
10	Imaging language networks before and after anterior temporal lobe resection: Results of a longitudinal fMRI study. Epilepsia, 2012, 53, 639-650.	5.1	139
11	Progressive Cortical Thinning in Patients With Focal Epilepsy. JAMA Neurology, 2019, 76, 1230.	9.0	132
12	A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain, 2013, 136, 1868-1888.	7.6	124
13	Pharmacoresistance in Epilepsy: A Pilot PET Study with the P-Glycoprotein Substrate R -[11 C]verapamil. Epilepsia, 2007, 48, 1774-1784.	5.1	119
14	Imaging structure and function in refractory focal epilepsy. Lancet Neurology, The, 2005, 4, 42-53.	10.2	118
15	A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy. Neurology, 2017, 89, 506-516.	1.1	118
16	Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia, 2018, 59, 1811-1841.	5.1	108
17	Frontal lobe function and structure in juvenile myoclonic epilepsy: A comprehensive review of neuropsychological and imaging data. Epilepsia, 2012, 53, 2091-2098.	5.1	106
18	Juvenile myoclonic epilepsy: A system disorder of the brain. Epilepsy Research, 2015, 114, 2-12.	1.6	103

#	Article	IF	CITATIONS
19	Structural imaging biomarkers of sudden unexpected death in epilepsy. Brain, 2015, 138, 2907-2919.	7.6	95
20	Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology, 2015, 84, 1512-1519.	1.1	88
21	Central Benzodiazepine/gamma-Aminobutyric AcidA Receptors in Idiopathic Generalized Epilepsy: An [11C]Flumazenil Positron Emission Tomography Study. Epilepsia, 1997, 38, 1089-1097.	5.1	79
22	Left temporal lobe language network connectivity in temporal lobe epilepsy. Brain, 2018, 141, 2406-2418.	7.6	75
23	Response to commentary on recommendations for the use of structural <scp>MRI</scp> in the care of patients with epilepsy: A consensus report from the <scp>ILAE</scp> Neuroimaging Task Force. Epilepsia, 2019, 60, 2143-2144.	5.1	74
24	Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy. Epilepsy Research, 2011, 95, 246-254.	1.6	73
25	In vivo [11C] flumazenil-PET correlates with ex vivo [3H] flumazenil autoradiography in hippocampal sclerosis. Annals of Neurology, 1998, 43, 618-626.	5.3	69
26	Effect of topiramate and zonisamide on fMRI cognitive networks. Neurology, 2017, 88, 1165-1171.	1.1	69
27	Association of Piriform Cortex Resection With Surgical Outcomes in Patients With Temporal Lobe Epilepsy. JAMA Neurology, 2019, 76, 690.	9.0	69
28	Audit of practice in sudden unexpected death in epilepsy (<scp>SUDEP</scp>) post mortems and neuropathological findings. Neuropathology and Applied Neurobiology, 2016, 42, 463-476.	3.2	68
29	Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18 F-FDG PET and arterial spin labeling. NeuroImage: Clinical, 2016, 11, 648-657.	2.7	67
30	Levetiracetam reduces abnormal network activations in temporal lobe epilepsy. Neurology, 2014, 83, 1508-1512.	1.1	66
31	Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study. Brain, 2016, 139, 415-430.	7.6	62
32	Seizures and Epilepsy After Stroke: Epidemiology, Biomarkers and Management. Drugs and Aging, 2021, 38, 285-299.	2.7	60
33	Status Epilepticus and Tiagabine Therapy Revisited. Epilepsia, 2005, 46, 1625-1632.	5.1	59
34	Motor co-activation in siblings of patients with juvenile myoclonic epilepsy: an imaging endophenotype?. Brain, 2014, 137, 2469-2479.	7.6	58
35	The effect of topiramate on cognitive fMRI. Epilepsy Research, 2013, 105, 250-255.	1.6	57
36	Pharmaco fMRI: Determining the functional anatomy of the effects of medication. NeuroImage: Clinical, 2016, 12, 691-697.	2.7	56

#	Article	IF	CITATIONS
37	Juvenile myoclonic epilepsy — Neuroimaging findings. Epilepsy and Behavior, 2013, 28, S40-S44.	1.7	54
38	Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain, 2019, 142, 2670-2687.	7.6	54
39	Thalamus and focal to bilateral seizures. Neurology, 2020, 95, e2427-e2441.	1.1	54
40	Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond. Molecular Psychiatry, 2021, 26, 825-834.	7.9	54
41	Seizures after Ischemic Stroke: A Matched Multicenter Study. Annals of Neurology, 2021, 90, 808-820.	5.3	54
42	Value of patient-reported symptoms in the diagnosis of transient loss of consciousness. Neurology, 2016, 87, 625-633.	1.1	51
43	Progress report on new antiepileptic drugs: A summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia, 2020, 61, 2365-2385.	5.1	45
44	Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). II. Drugs in more advanced clinical development. Epilepsia, 2018, 59, 1842-1866.	5.1	44
45	Neuroinflammation imaging markers for epileptogenesis. Epilepsia, 2017, 58, 11-19.	5.1	41
46	Cognitive Function in Genetic Generalized Epilepsies: Insights From Neuropsychology and Neuroimaging. Frontiers in Neurology, 2020, 11, 144.	2.4	41
47	Sulthiame in adults with refractory epilepsy and learning disability: an open trial. Epilepsy Research, 2002, 50, 277-282.	1.6	38
48	In vivo P-glycoprotein function before and after epilepsy surgery. Neurology, 2014, 83, 1326-1331.	1.1	37
49	Developmental MRI markers cosegregate juvenile patients with myoclonic epilepsy and their healthy siblings. Neurology, 2019, 93, e1272-e1280.	1.1	35
50	Clinical studies and antiâ€inflammatory mechanisms of treatments. Epilepsia, 2017, 58, 69-82.	5.1	34
51	Effects of carbamazepine and lamotrigine on functional magnetic resonance imaging cognitive networks. Epilepsia, 2018, 59, 1362-1371.	5.1	30
52	Naming fMRI predicts the effect of temporal lobe resection on language decline. Annals of Clinical and Translational Neurology, 2019, 6, 2186-2196.	3.7	29
53	Value of witness observations in the differential diagnosis of transient loss of consciousness. Neurology, 2019, 92, e895-e904.	1.1	27
54	Resective surgery prevents progressive cortical thinning in temporal lobe epilepsy. Brain, 2020, 143, 3262-3272.	7.6	27

#	Article	IF	CITATIONS
55	WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia, 2017, 58, 315-330.	5.1	26
56	Advances of Molecular Imaging in Epilepsy. Current Neurology and Neuroscience Reports, 2016, 16, 58.	4.2	25
57	Machine learning as a diagnostic decision aid for patients with transient loss of consciousness. Neurology: Clinical Practice, 2020, 10, 96-105.	1.6	25
58	Memory in frontal lobe epilepsy: An fMRI study. Epilepsia, 2012, 53, 1756-1764.	5.1	24
59	Imaging Biomarkers of Anti-Epileptic Drug Action: Insights from Magnetic Resonance Imaging. Current Pharmaceutical Design, 2018, 23, 5727-5739.	1.9	23
60	Noise removal in resting-state and task fMRI: functional connectivity and activation maps. Journal of Neural Engineering, 2020, 17, 046040.	3.5	22
61	Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain, 2023, 146, 935-953.	7.6	22
62	Age-Specific ¹⁸ F-FDG Image Processing Pipelines and Analysis Are Essential for Individual Mapping of Seizure Foci in Pediatric Patients with Intractable Epilepsy. Journal of Nuclear Medicine, 2018, 59, 1590-1596.	5.0	20
63	The prognostic value of long-term ambulatory electroencephalography in antiepileptic drug reduction in adults with learning disability and epilepsy in long-term remission. Epilepsy and Behavior, 2008, 13, 474-477.	1.7	18
64	Development of Fluorine-18 Labeled Metabolically Activated Tracers for Imaging of Drug Efflux Transporters with Positron Emission Tomography. Journal of Medicinal Chemistry, 2015, 58, 6058-6080.	6.4	18
65	Test–retest reproducibility of cannabinoid-receptor type 1 availability quantified with the PET ligand [11C]MePPEP. NeuroImage, 2014, 97, 151-162.	4.2	17
66	Test-retest reproducibility of quantitative binding measures of [11 C]Ro15-4513, a PET ligand for GABA A receptors containing alpha5 subunits. NeuroImage, 2017, 152, 270-282.	4.2	17
67	Motor hyperactivation during cognitive tasks: An endophenotype of juvenile myoclonic epilepsy. Epilepsia, 2020, 61, 1438-1452.	5.1	17
68	Validation of a combined image derived input function and venous sampling approach for the quantification of [18F]GE-179 PET binding in the brain. NeuroImage, 2021, 237, 118194.	4.2	17
69	Arterial Spin Labeling Reveals Disrupted Brain Networks and Functional Connectivity in Drug-Resistant Temporal Epilepsy. Frontiers in Neuroinformatics, 2018, 12, 101.	2.5	16
70	Impaired naming performance in temporal lobe epilepsy: language fMRI responses are modulated by disease characteristics. Journal of Neurology, 2021, 268, 147-160.	3.6	16
71	The impact of SARS-CoV-2 vaccination in Dravet syndrome: A UK survey. Epilepsy and Behavior, 2021, 124, 108258.	1.7	15
72	Decoupling of functional and structural language networks in temporal lobe epilepsy. Epilepsia, 2021, 62, 2941-2954.	5.1	15

#	Article	IF	CITATIONS
73	Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia, 2022, 63, 2597-2622.	5.1	15
74	Neural correlates of de novo depression following left temporal lobe epilepsy surgery: A voxel based morphometry study of pre-surgical structural MRI. Epilepsy Research, 2014, 108, 517-525.	1.6	14
75	Epilepsy. Current Opinion in Neurology, 2004, 17, 467-474.	3.6	12
76	Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy. Epilepsy Research, 2016, 128, 102-112.	1.6	12
77	Pharmaco-fMRI: A Tool to Predict the Response to Antiepileptic Drugs in Epilepsy. Frontiers in Neurology, 2019, 10, 1203.	2.4	11
78	Comment on " <i>In Vivo</i> [¹⁸ F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates― ACS Chemical Neuroscience, 2019, 10, 768-772.	3.5	11
79	Clinical outcomes of COVID-19 in long-term care facilities for people with epilepsy. Epilepsy and Behavior, 2021, 115, 107602.	1.7	11
80	Neuroimaging of drug resistance in epilepsy. Current Opinion in Neurology, 2014, 27, 192-198.	3.6	10
81	Shared hippocampal abnormalities in sporadic temporal lobe epilepsy patients and their siblings. Epilepsia, 2020, 61, 735-746.	5.1	10
82	Functional neuroimaging in the postictal state. Epilepsy and Behavior, 2010, 19, 127-130.	1.7	8
83	The SeLECT score is useful to predict post-stroke epilepsy. Lancet Neurology, The, 2018, 17, 395-396.	10.2	7
84	Functional imaging of the piriform cortex in focal epilepsy. Experimental Neurology, 2020, 330, 113305.	4.1	7
85	Unexpected brain imaging findings in patients with seizures. Epilepsy and Behavior, 2020, 111, 107241.	1.7	6
86	Resection of the piriform cortex for temporal lobe epilepsy: a Novel approach on imaging segmentation and surgical application. British Journal of Neurosurgery, 2021, , 1-6.	0.8	6
87	Effect of Anti-seizure Medications on Functional Anatomy of Language: A Perspective From Language Functional Magnetic Resonance Imaging. Frontiers in Neuroscience, 2021, 15, 787272.	2.8	6
88	Αlpha 5 subunit-containing GABAA receptors in temporal lobe epilepsy with normal MRI. Brain Communications, 2021, 3, fcaa190.	3.3	5
89	Simplifying [18F]GE-179 PET: are both arterial blood sampling and 90-min acquisitions essential?. EJNMMI Research, 2018, 8, 46.	2.5	4
90	The help of biomarkers in the prevention of epilepsy. Lancet Neurology, The, 2016, 15, 782-784.	10.2	3

#	Article	IF	CITATIONS
91	Network Modeling of Epilepsy Using Structural and Functional MRI. , 2019, , 77-94.		3
92	A summary of data presented at the XIV conference on new antiepileptic drug and devices (EILAT XIV). Epilepsy Research, 2019, 153, 66-67.	1.6	3
93	Imaging Genetics for Benign Mesial Temporal Lobe Epilepsy. , 2019, , 48-54.		2
94	Imaging Mechanisms of Drug Resistance in Experimental Models of Epilepsy. , 2019, , 148-156.		2
95	Decreased GABA-A Receptor Binding in Association With β-Lactam Antibiotic Use. Clinical Nuclear Medicine, 2019, 44, 981-982.	1.3	2
96	Towards improved test-retest reliability in quantitative ligand PET: [11C]Diprenorphine as an example. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S665-S665.	4.3	2
97	Imaging Neural Excitability and Networks in Genetic Absence Epilepsy Models. , 2019, , 181-192.		1
98	Imaging Cortical and Subcortical Circuitry in Generalized Epilepsies. , 2019, , 124-134.		1
99	Predicting the Outcome of Surgical Interventions for Epilepsy Using Imaging Biomarkers. , 2019, , 169-180.		1
100	Workshop Report: Michael Forum: Dresden, Germany: September 18-20, 2008. Epilepsia, 2009, 50, 1833-1834.	5.1	0
101	Imaging Biomarkers for Febrile Status Epilepticus and Other Forms of Convulsive Status Epilepticus. , 2019, , 1-8.		0
102	Experimental MRI Approaches to Study Posttraumatic Epilepsy. , 2019, , 9-17.		0
103	Imaging Biomarkers of Acquired Epilepsies. , 2019, , 18-30.		Ο
104	Imaging and Cognition in Children with New-Onset Epilepsies. , 2019, , 31-47.		0
105	Computational Neuroimaging of Epilepsy. , 2019, , 55-67.		0
106	Imaging White Matter Pathology in Epilepsy. , 2019, , 68-76.		0
107	Mapping Metabolism and Inflammation in Epilepsy. , 2019, , 95-107.		0
108	Interictal and Ictal Brain Network Changes in Focal Epilepsy. , 2019, , 108-114.		0

#	Article	IF	CITATIONS
109	Ictal Events Imaged through SPECT. , 2019, , 115-123.		0
110	Prevention of Epileptogenesis in Animal Models. , 2019, , 135-147.		0
111	Biomarkers of Drug Response and Pharmacoresistance to Epilepsy. , 2019, , 157-168.		0
112	Tracking Epilepsy Disease Progression with Neuroimaging. , 2019, , 217-228.		0
113	Imaging Biomarkers to Study Cognition in Epilepsy. , 2019, , 229-244.		0
114	Network Excitability and Cognition in the Developing Brain. , 2019, , 193-206.		0
115	Perfusion-based Brain Connectivity: PASL vs pCASL. , 2019, , .		0
116	Imaging Comorbidities in Epilepsy: Depression. , 2019, , 207-216.		0