Zhi Hao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442583/publications.pdf

Version: 2024-02-01

		109137	91712
144	5,122	35	69
papers	citations	h-index	g-index
1.4.0	1.46	1.46	2055
146	146	146	3955
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Single-Layer Re-Organizable All-Dielectric Meta-Lens Platform for Arbitrary Transmissive Phase Manipulation at Millimeter-Wave Frequencies. IEEE Transactions on Antennas and Propagation, 2022, 70, 2059-2069.	3.1	6
2	Circularly Polarized One-Bit Reconfigurable ME-Dipole Reflectarray at X-Band. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 496-500.	2.4	31
3	Chirality-Intrigged Spin-Selective Metasurface and Applications in Generating Orbital Angular Momentum. IEEE Transactions on Antennas and Propagation, 2022, 70, 4549-4557.	3.1	12
4	A Wideband Circularly Polarized Magneto-Electric Dipole Antenna Array for Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation, 2022, 70, 3876-3881.	3.1	12
5	Dual-Wideband Dual-Circularly-Polarized Shared-Aperture Reflectarrays With a Single Functional Substrate for K-/Ka-Band Applications. IEEE Transactions on Antennas and Propagation, 2022, 70, 5404-5417.	3.1	14
6	A Millimeter-Wave Substrate Integrated Waveguide H-Plane Horn Antenna With Enhanced Gain and Efficiency. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 769-773.	2.4	6
7	Frequency-Tunable and Magnitude-Tunable Microwave Metasurface Absorbers Enabled by Shape Memory Polymers. IEEE Transactions on Antennas and Propagation, 2022, 70, 6804-6812.	3.1	12
8	A Compact, Ultrawideband Dual-Polarized Vivaldi Antenna With Radar Cross Section Reduction. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 1323-1327.	2.4	7
9	Recent Developments of Wideband and Multi-Band Dual-Circularly-Polarized Reflect-Arrays. , 2022, , .		O
10	Generalized Sequential Rotation Arrays With Full Control of Dual-Circularly-Polarized Aperture-Field Distribution Based on Elliptically-Polarized Elements. IEEE Transactions on Antennas and Propagation, 2022, 70, 9198-9213.	3.1	2
11	Modal Analysis, Inverse-Design, and Experimental Validation of Bandwidth-Controllable Suspended Patch Antennas Loaded With Cylindrical Anisotropic Impedance Surfaces. IEEE Transactions on Antennas and Propagation, 2022, 70, 8983-8995.	3.1	1
12	A Generalized Flat-Topped Beam Synthesis Approach for Uniform Linear Array With Arbitrary Beam Directions. IEEE Open Journal of Antennas and Propagation, 2022, 3, 709-721.	2.5	4
13	Wideband Dual-Circularly-Polarized Reflect-Arrays Based on Dual-Functional-Layer Cells With Berry-Phase Compensation at X-Band. IEEE Transactions on Antennas and Propagation, 2022, 70, 9924-9929.	3.1	2
14	Millimeter-Wave $\hat{A}\pm45\hat{A}^\circ$ Dual Linearly Polarized End-Fire Phased Array Antenna for 5G/B5G Mobile Terminals. IEEE Transactions on Antennas and Propagation, 2022, 70, 10391-10404.	3.1	9
15	A Self-Calibration Method for 5G Full-Digital TDD Beamforming Systems Using an Embedded Transmission Line. IEEE Transactions on Antennas and Propagation, 2021, 69, 2648-2659.	3.1	11
16	Polarization-Controllable Dual-Band Antennas Using Nonbianisotropic Complementary Split Ring Resonator-Loaded Metasurfaces. IEEE Transactions on Antennas and Propagation, 2021, 69, 1146-1151.	3.1	3
17	A wideband dualâ€polarized magnetoâ€electric dipole antenna for millimeter wave applications. Microwave and Optical Technology Letters, 2021, 63, 1452-1457.	0.9	11
18	An Orthogonal Hybrid Analog–Digital Multibeam Antenna Array for Millimeter-Wave Massive MIMO Systems. IEEE Transactions on Antennas and Propagation, 2021, 69, 1393-1403.	3.1	32

#	Article	IF	Citations
19	Theory, Design, and Verification of Dual-Circularly Polarized Dual-Beam Arrays With Independent Control of Polarization: A Generalization of Sequential Rotation Arrays. IEEE Transactions on Antennas and Propagation, 2021, 69, 1369-1382.	3.1	15
20	Wideband and Low-Profile Integrated Dual-Circularly-Polarized Transmit-Arrays Enabled by Antenna-Filter-Antenna Phase Shifting Cells. IEEE Transactions on Antennas and Propagation, 2021, 69, 7462-7475.	3.1	25
21	2-Element Slot Antenna Array Based on Substrate Integrated Waveguide at Q-band., 2021,,.		1
22	A Wideband Dual-Linearly-Polarized Millimeter Wave Antenna for 5G Terminal Application., 2021,,.		2
23	The Role of Millimeter-Wave Technologies in 5G/6G Wireless Communications. IEEE Journal of Microwaves, 2021, 1, 101-122.	4.9	312
24	A Compact Dual-Band Triple-Mode Antenna With Pattern and Polarization Diversities Enabled by Shielded Mushroom Structures. IEEE Transactions on Antennas and Propagation, 2021, 69, 6229-6243.	3.1	11
25	Millimeter-Wave Transmit-Arrays for Vector Vortex Beam Generation., 2021,,.		1
26	Compact multi-functional frequency-selective absorber based on customizable impedance films. Optics Express, 2021, 29, 14974.	1.7	7
27	A Hybrid Radar System With a Phased Transmitting Array and a Digital Beamforming Receiving Array. IEEE Transactions on Antennas and Propagation, 2021, 69, 1970-1981.	3.1	17
28	A Circularly Polarized 1 Bit Electronically Reconfigurable Reflectarray Based on Electromagnetic Element Rotation. IEEE Transactions on Antennas and Propagation, 2021, 69, 5585-5595.	3.1	54
29	Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for <i>Ka</i> -Band 5G Applications. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 2038-2042.	2.4	34
30	Key Technologies in 6G Terahertz Wireless Communication Systems: A Survey. IEEE Vehicular Technology Magazine, 2021, 16, 27-37.	2.8	31
31	A Mode Matching Method for Efficient Evaluation of Short Backfire Antennas Loaded with Anisotropic Impedance Surfaces. , 2021, , .		0
32	Modal Expansion Analysis, Design, and Optimization of Metasurface-Coated Vertically-Polarized Antennas. , 2021, , .		0
33	Dual-band Dual-Circularly-Polarized Reflect-array for Four-Color Multibeam Generation at K-/Ka-bands. , 2021, , .		0
34	A Layer-Substitutable Dual-Circularly-Polarized Reflect-Array at X-band. , 2021, , .		0
35	Near-Field Wireless Power Transfer to Deep-Tissue Implants for Biomedical Applications. IEEE Transactions on Antennas and Propagation, 2020, 68, 1098-1106.	3.1	34
36	Flexible Rasorber Based on Graphene With Energy Manipulation Function. IEEE Transactions on Antennas and Propagation, 2020, 68, 351-359.	3.1	25

#	Article	IF	Citations
37	Wideband Transmit Arrays Based on Anisotropic Impedance Surfaces for Circularly Polarized Single-Feed Multibeam Generation in the Q-Band. IEEE Transactions on Antennas and Propagation, 2020, 68, 217-229.	3.1	29
38	A Single Noninterleaved Metasurface for Highâ€Capacity and Flexible Mode Multiplexing of Higherâ€Order Poincaré Sphere Beams. Advanced Materials, 2020, 32, e1903983.	11.1	67
39	Patch Antenna Loaded With Paired Shorting Pins and H-Shaped Slot for 28/38 GHz Dual-Band MIMO Applications. IEEE Access, 2020, 8, 23705-23712.	2.6	50
40	Integrated Broadband Circularly Polarized Multibeam Antennas Using Berry-Phase Transmit-Arrays for \$Ka\$-Band Applications. IEEE Transactions on Antennas and Propagation, 2020, 68, 859-872.	3.1	49
41	A Low-Profile and Wideband Triple-Mode Antenna for Wireless Body Area Network Concurrent On-/Off-Body Communications. IEEE Transactions on Antennas and Propagation, 2020, 68, 1982-1994.	3.1	29
42	A Novel E-plane-Focused Cylindrical Luneburg Lens Loaded With Metal Grids for Sidelobe Level Reduction. IEEE Transactions on Antennas and Propagation, 2020, 68, 736-744.	3.1	18
43	Metasurface-Based Circularly-Polarized Multibeam Reflect-/Transmit-Arrays. , 2020, , .		2
44	Millimeter-Wave Broadband Substrate Integrated Magneto-Electric Dipole Arrays With Corporate Low-Profile Microstrip Feeding Structures. IEEE Transactions on Antennas and Propagation, 2020, 68, 7056-7067.	3.1	35
45	A Generalized Accurate Model for Complementary Periodic Subwavelength Metasurface Based on Babinet Principle. IEEE Transactions on Antennas and Propagation, 2020, 68, 3780-3790.	3.1	8
46	A Low-Profile Beamforming Patch Array With a Cosecant Fourth Power Pattern for Millimeter-Wave Synthetic Aperture Radar Applications. IEEE Transactions on Antennas and Propagation, 2020, 68, 6486-6496.	3.1	25
47	Low-Cost Millimeter-Wave Circularly Polarized Planar Integrated Magneto-Electric Dipole and Its Arrays With Low-Profile Feeding Structures. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1400-1404.	2.4	37
48	Design and Implementation of a Full-Digital Beamforming Array With Nonreciprocal Tx/Rx Beam Patterns. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1978-1982.	2.4	19
49	A N260 Band 64 Channel Millimeter Wave Full-Digital Multi-Beam Array for 5G Massive MIMO Applications. IEEE Access, 2020, 8, 47640-47653.	2.6	24
50	Anisotropic Impedance Surface-Enabled Low-Profile Broadband Dual- Circularly Polarized Multibeam Reflectarrays for <i>Ka</i> -Band Applications. IEEE Transactions on Antennas and Propagation, 2020, 68, 6441-6446.	3.1	33
51	Low-Profile Wideband Vertically Folded Slotted Circular Patch Array for <i>Ka</i> Band Applications. IEEE Transactions on Antennas and Propagation, 2020, 68, 6844-6849.	3.1	37
52	Ungrounded Coplanar Waveguide Based Straight Line Methods for Broadband and Continuous Dielectric Characterization of Microwave Substrates. IEEE Access, 2020, 8, 32624-32631.	2.6	6
53	Metasurface-Enabled Advanced Short Backfire Antenna. IEEE Transactions on Antennas and Propagation, 2020, 68, 1302-1311.	3.1	4
54	Metantenna: When Metasurface Meets Antenna Again. IEEE Transactions on Antennas and Propagation, 2020, 68, 1332-1347.	3.1	122

#	Article	IF	CITATIONS
55	Full Polarization Transformation Using Graphene in Microwave Frequencies. IEEE Transactions on Antennas and Propagation, 2020, 68, 3760-3769.	3.1	12
56	Low-Profile and Wideband Dual-Circularly Polarized Reflect-Arrays Based on Rotated Metal-Backed Dual-Polarized Aperture-Coupled Patch Elements. IEEE Transactions on Antennas and Propagation, 2020, 68, 2108-2117.	3.1	33
57	Flexible Manipulation of Bessel‣ike Beams with a Reconfigurable Metasurface. Advanced Optical Materials, 2020, 8, 2001084.	3.6	44
58	Recent Development of Microwave and Millimeter-Wave Dual-Circularly-Polarized Arrays., 2020,,.		1
59	Broadband Measurement of Substrate Complex Permittivity Using Optimized ABCD Matrix. IEEE Access, 2020, 8, 224513-224521.	2.6	5
60	mm-Wave Waveguide Traveling-Wave Power Combiner Design Using an Equivalent Circuit Model. IEEE Access, 2019, 7, 88327-88337.	2.6	3
61	Multibeam Generation and Measurement of a DDS-Based Digital Beamforming Array Transmitter at <i>Ka</i> -Band. IEEE Transactions on Antennas and Propagation, 2019, 67, 3030-3039.	3.1	30
62	Full-Angle Digital Predistortion of 5G Millimeter-Wave Massive MIMO Transmitters. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 2847-2860.	2.9	71
63	Design and validation of a metasurface lens for converging vortex beams. Applied Physics Express, 2019, 12, 084501.	1.1	16
64	Flexible and optically transparent microwave absorber with wide bandwidth based on graphene. Carbon, 2019, 152, 70-76.	5 . 4	55
65	Analysis of Eighth-Mode Substrate-Integrated Waveguide Cavity and Flexible Filter Design. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 2701-2712.	2.9	48
66	Compact Self-Diplexing Dual-Band Dual-Sense Circularly Polarized Array Antenna With Closely Spaced Operating Frequencies. IEEE Transactions on Antennas and Propagation, 2019, 67, 4617-4625.	3.1	53
67	2018 IEEE International Workshop on Antenna Technology [Meeting Reports]. IEEE Antennas and Propagation Magazine, 2019, 61, 9-11.	1.2	0
68	Low-loss Substrate Material for Millimeter-wave and THz Applications (Invited)., 2019,,.		4
69	Wideband, Low-Profile Patch Array Antenna With Corporate Stacked Microstrip and Substrate Integrated Waveguide Feeding Structure. IEEE Transactions on Antennas and Propagation, 2019, 67, 1368-1373.	3.1	63
70	A Compact Metasurface-Enabled Dual-Band Dual-Circularly Polarized Antenna Loaded With Complementary Split Ring Resonators. IEEE Transactions on Antennas and Propagation, 2019, 67, 794-803.	3.1	79
71	Low-Profile Circular Patch Array Fed by Slotted Substrate Integrated Waveguide. IEEE Transactions on Antennas and Propagation, 2019, 67, 960-970.	3.1	20
72	A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications. Nature Communications, 2019, 10, 108.	5 . 8	33

#	Article	IF	Citations
73	A Compact Single-Layer Q-Band Tapered Slot Antenna Array With Phase-Shifting Inductive Windows for Endfire Patterns. IEEE Transactions on Antennas and Propagation, 2019, 67, 169-178.	3.1	26
74	Optimization and Implementation of SIW Slot Array for Both Medium- and Long-Range 77 GHz Automotive Radar Application. IEEE Transactions on Antennas and Propagation, 2018, 66, 3769-3774.	3.1	35
75	Design and Experiments of Bandwidth-Controllable Broadband Monopole Antennas With Conformal Anisotropic Impedance Surface Coatings. IEEE Transactions on Antennas and Propagation, 2018, 66, 1133-1142.	3.1	20
76	Parametric Investigations and Demonstration of A Metasurface-Coated Ultra-wideband Monopole. , 2018, , .		0
77	A Multibeam Folded Reflectarray Antenna With Wide Coverage and Integrated Primary Sources for Millimeter-Wave Massive MIMO Applications. IEEE Transactions on Antennas and Propagation, 2018, 66, 6875-6882.	3.1	59
78	Asymmetric transmission based on magnetic resonance coupling in 3D-printed metamaterials. Applied Physics Letters, $2018,113,.$	1.5	7
79	A Compact Triple-Band Antenna With a Notched Ultra-Wideband and Its MIMO Array. IEEE Transactions on Antennas and Propagation, 2018, 66, 7021-7031.	3.1	25
80	Verification and crosstalk of chirowaveguides. , 2018, , .		0
81	E -Band Low-Profile, Wideband 45° Linearly Polarized Slot-Loaded Patch and Its Array for Millimeter-Wave Communications. IEEE Transactions on Antennas and Propagation, 2018, 66, 4364-4369.	3.1	39
82	An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System. IEICE Transactions on Communications, 2018, E101.B, 262-276.	0.4	8
83	Highly Efficient Broadband Multiplexed Millimeter-Wave Vortices from Metasurface-Enabled Transmit-Arrays of Subwavelength Thickness. Physical Review Applied, 2018, 9, .	1.5	56
84	Modal-expansion analysis of monopole antennas coated by a finite-height tensor impedance surface. , 2017, , .		0
85	Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 920-932.	2.7	139
86	Multibeam Antenna Technologies for 5G Wireless Communications. IEEE Transactions on Antennas and Propagation, 2017, 65, 6231-6249.	3.1	753
87	A highly-confined dielectric waveguide enabled by conformal anisotropic impedance surfaces. , 2017, , .		1
88	Conformal metasurface-coated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk. Nature Communications, 2017, 8, 356.	5.8	24
89	A Compact Dual-Band Antenna Enabled by a Complementary Split-Ring Resonator-Loaded Metasurface. IEEE Transactions on Antennas and Propagation, 2017, 65, 6878-6888.	3.1	29
90	A Q-Band Low-Profile Dual Circularly Polarized Array Antenna Incorporating Linearly Polarized Substrate Integrated Waveguide-Fed Patch Subarrays. IEEE Transactions on Antennas and Propagation, 2017, 65, 5200-5210.	3.1	47

#	Article	IF	Citations
91	An Array Antenna for Both Long- and Medium-Range 77 GHz Automotive Radar Applications. IEEE Transactions on Antennas and Propagation, 2017, 65, 7207-7216.	3.1	82
92	Dielectric nanoresonator based lossless optical perfect magnetic mirror with near-zero reflection phase. Applied Physics Letters, 2016 , 108 , .	1.5	25
93	A compact and robust circularly-polarized wearable antenna using an anisotropic metasurface. , 2016, , .		2
94	Anisotropic impedance metasurface enabled dual-band short backfire antennas with high aperture efficiency. , $2016, , .$		4
95	On the Use of Subwavelength Radial Grooves to Support Spoof Surface-Plasmon-Polariton Waves. IEEE Microwave and Wireless Components Letters, 2016, 26, 861-863.	2.0	10
96	Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators. Optics Express, 2016, 24, 9629.	1.7	26
97	Compact, Wideband Antennas Enabled by Interdigitated Capacitor-Loaded Metasurfaces. IEEE Transactions on Antennas and Propagation, 2016, 64, 1595-1606.	3.1	76
98	Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 328-338.	2.7	114
99	Chapter 8: Broadband Optical Metasurfaces and Metamaterials. , 2016, , 321-370.		0
100	Restoring Intrinsic Properties of Electromagnetic Radiators Using Ultralightweight Integrated Metasurface Cloaks. Advanced Functional Materials, 2015, 25, 4708-4716.	7.8	89
101	An integrated metasurface filtering cloak for monopole antennas. , 2015, , .		0
102	Parametric analysis of electromagnetically induced transparency (EIT) in chiral metamaterials. , 2015, , .		0
103	Compact narrowband and wideband circularly-polarized filtering antennas. , 2015, , .		0
104	Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials. Scientific Reports, 2015, 5, 12224.	1.6	15
105	Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140363.	1.6	6
106	A Compact, Wideband Circularly Polarized Co-designed Filtering Antenna and Its Application for Wearable Devices With Low SAR. IEEE Transactions on Antennas and Propagation, 2015, 63, 3808-3818.	3.1	199
107	Miniaturized low profile antenna enabled by a complementary SRR loaded metasurface., 2015,,.		1
108	An overview of several recent antenna designs utilizing nature-inspired optimization algorithms. , 2014, , .		1

#	Article	IF	CITATIONS
109	Quasiâ€Threeâ€Dimensional Angleâ€Tolerant Electromagnetic Illusion Using Ultrathin Metasurface Coatings. Advanced Functional Materials, 2014, 24, 7728-7736.	7.8	45
110	Far-Zone Focusing Lenses Designed by Complex Coordinate Transformations. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1779-1782.	2.4	6
111	A low-profile unidirectional antenna enabled by interdigital capacitor loaded metasurface. , 2014, , .		3
112	A Low-Profile High-Gain Substrate-Integrated Waveguide Slot Antenna Enabled by an Ultrathin Anisotropic Zero-Index Metamaterial Coating. IEEE Transactions on Antennas and Propagation, 2014, 62, 1173-1184.	3.1	51
113	Demonstration of broadband and wide-angle optical metasurface-based waveplates. , 2014, , .		O
114	Metasurface-enabled electromagnetic cloaking and illusion coatings beyond the quasi-static limit. , 2014, , .		0
115	Robust low-profile metasurface-enabled wearable antennas for off-body communications., 2014,,.		8
116	Transformation-optics antenna lens design using complex coordinate transformation. , 2014, , .		3
117	A Compact, Low-Profile Metasurface-Enabled Antenna for Wearable Medical Body-Area Network Devices. IEEE Transactions on Antennas and Propagation, 2014, 62, 4021-4030.	3.1	347
118	Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates. Scientific Reports, 2014, 4, 7511.	1.6	100
119	A low-profile high-gain SIW slot antenna using anisotropic zero-index metamaterial coating. , 2013, , .		0
120	Exploiting metasurface anisotropy for achieving near-perfect low-profile cloaks beyond the quasi-static limit. Journal Physics D: Applied Physics, 2013, 46, 505306.	1.3	37
121	Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions. Scientific Reports, 2013, 3, 1571.	1.6	73
122	Experimental verification of substrate-induced bianisotropy in optical metamaterials. Applied Physics Letters, 2013, 103, .	1.5	7
123	Bifunctional plasmonic metamaterials enabled by subwavelength nano-notches for broadband, polarization-independent enhanced optical transmission and passive beam-steering. Optics Express, 2013, 21, 31492.	1.7	11
124	A dispersion engineering enabled broadband optical metamaterial filter. , 2013, , .		0
125	Substrate-induced bianisotropy compensation in optical metamaterials., 2013,,.		0
126	Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings. Optics Express, 2013, 21, 5594.	1.7	11

#	Article	IF	CITATIONS
127	Experimental verification of substrate-induced bianisotropy in optical metamaterials., 2012,,.		O
128	Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators. , 2012, , .		0
129	Broadband High Directivity Multibeam Emission Through Transformation Optics-Enabled Metamaterial Lenses. IEEE Transactions on Antennas and Propagation, 2012, 60, 5063-5074.	3.1	51
130	Low-Loss Impedance-Matched Optical Metamaterials with Zero-Phase Delay. ACS Nano, 2012, 6, 4475-4482.	7.3	69
131	Experimental demonstration of a conformal optical metamaterial absorber., 2011,,.		2
132	Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating. ACS Nano, 2011, 5, 4641-4647.	7.3	306
133	Experimental verification of a zero-index near-infrared metamaterial. , 2011, , .		1
134	Anisotropic metamaterial lens with a monopole feed for high-gain multi-beam radiation. , $2011, \ldots$		4
135	A Broadband Monopole Antenna Enabled by an Ultrathin Anisotropic Metamaterial Coating. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 1543-1546.	2.4	47
136	Stub-loaded inverted-F antenna synthesis via Wind Driven Optimization. , 2011, , .		16
137	An Isotropic 8.5 MHz magneti meta-lens. , 2011, , .		1
138	Conformal mappings to achieve simple material parameters for transformation optics devices. Optics Express, 2010, 18, 244.	1.7	86
139	Flexible wide-angle polarization-insensitive mid-infrared metamaterial absorbers. , 2010, , .		3
140	Genetic algorithm synthesis of impedance-matched infrared ZIMs with wide FOV using a generalized inversion algorithm. , 2010, , .		3
141	Tunable metamaterials for conformally mapped Transformation Optics lenses. , 2010, , .		2
142	Low loss dual polarized matched zero index metamaterials for microwave applications. , 2009, , .		1
143	Low loss RF modified fishnet metamaterials with optimized negative, zero and unity refractive index behavior., 2009, , .		2
144	Low loss genetically engineered multilayer fishnet NIM for microwave applications. , 2009, , .		0