Fei Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442496/publications.pdf

Version: 2024-02-01

471509 552781 33 741 17 26 citations h-index g-index papers 33 33 33 684 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Highly Enantioselective Synthesis of Chiral Benzhydrols via Manganese Catalyzed Asymmetric Hydrogenation of Unsymmetrical Benzophenones Using an Imidazole-Based Chiral PNN Tridentate Ligand. Organic Letters, 2019, 21, 3937-3941.	4.6	76
2	Traceless Directing Group Assisted Cobalt atalyzed Câ^'H Carbonylation of Benzylamines. Advanced Synthesis and Catalysis, 2017, 359, 3707-3712.	4.3	71
3	Development of Ferrocene-Based Diamine-Phosphine-Sulfonamide Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Journal of Organic Chemistry, 2018, 83, 10749-10761.	3.2	58
4	Metal-Oxidant-Free Cobalt-Catalyzed C(sp ²)â€"H Carbonylation of <i>ortho</i> -Arylanilines: An Approach toward Free (<i>NH</i>)-Phenanthridinones. Journal of Organic Chemistry, 2018, 83, 5698-5706.	3.2	42
5	Construction of spirooxindole-fused spiropyrazolones containing contiguous three stereogenic centres $\langle i \rangle$ via $\langle j \rangle$ [3 + 2] annulation utilizing a ferrocene derived bifunctional phosphine catalyst. Organic Chemistry Frontiers, 2020, 7, 1016-1021.	4.5	34
6	Metal- and oxidant-free electrochemical synthesis of sulfinic esters from thiols and alcohols. Green Chemistry, 2019, 21, 5528-5531.	9.0	32
7	Ruthenium-Catalyzed Electrochemical Synthesis of Indolines through Dehydrogenative [3 + 2] Annulation with H ₂ Evolution. Journal of Organic Chemistry, 2020, 85, 13735-13746.	3.2	32
8	Highly Enantioselective Hydrogenation of Non- <i>ortho</i> li>-Substituted 2-Pyridyl Aryl Ketones via Iridium- <i>f</i> -Diaphos Catalysis. Organic Letters, 2019, 21, 5392-5396.	4.6	30
9	Cobalt(II)â€Catalyzed [5+2] Câ^H Annulation of <i>>o</i> à€Arylanilines with Alkynes: An Expedient Route to Dibenzoâ€[<i>b</i> , <i>d</i>]azepines. Advanced Synthesis and Catalysis, 2019, 361, 3094-3101.	4.3	30
10	B(C ₆ F ₅) ₃ -catalyzed Markovnikov addition of indoles to aryl alkynes: an approach toward bis(indolyl)alkanes. Organic and Biomolecular Chemistry, 2018, 16, 9274-9278.	2.8	28
11	B(C ₆ F ₅) ₃ -Catalyzed Asymmetric Reductive Amination of Ketones with Ammonia Borane. Journal of Organic Chemistry, 2018, 83, 11502-11509.	3.2	25
12	Phosphine-catalyzed [3 + 2] annulation reaction: highly regio- and diastereoselective synthesis of 2-azaspiro[4.4]nonene-1,3-diones. Organic and Biomolecular Chemistry, 2017, 15, 7523-7526.	2.8	23
13	Electrosynthesis of CF ₃ â€6ubstituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Advanced Synthesis and Catalysis, 2022, 364, 1319-1325.	4.3	23
14	Copper Catalysis for Nicotinate Synthesis through $\langle i \rangle \hat{1}^2 \hat{a} \in \mathcal{N}$ $i > \hat{1}^2 \hat{a} \in \mathcal{N}$ $i > \hat{1}^2 \langle i > \hat{1}^2 \langle i > \hat{1}^2 \rangle$ $i > \hat{1}^2 \langle i > \hat{1}^2 \langle i > \hat{1}^2 \rangle$ $i > \hat{1}^2 \langle i > \hat{1}^2 \langle i > \hat{1}^2 \rangle$ $i > \hat{1}^2 \langle i > \hat{1}^2 \langle i > \hat{1}^2 \rangle$ $i > \hat{1}^2 \langle i > \hat{1}^2 \rangle$	4.3	22
15	Divergent electrolysis for the controllable coupling of thiols with 1,2-dichloroethane: a mild approach to sulfide and sulfoxide. Green Chemistry, 2022, 24, 1342-1349.	9.0	21
16	Late-stage diversification by rutheniumelectro-catalyzed C–H mono- and di-acyloxylation. Green Synthesis and Catalysis, 2020, 1, 175-179.	6.8	20
17	Recyclable and reusable <i>n</i> -Bu ₄ NBF ₄ /PEG-400/H ₂ O system for electrochemical C-3 formylation of indoles with Me ₃ N as a carbonyl source. Green Chemistry, 2021, 23, 4107-4113.	9.0	19
18	Divergent synthesis of spirocyclopentene-pyrazolones and pyrano[2,3-c]-pyrazoles via Lewis base controlled annulation reactions. Tetrahedron Letters, 2019, 60, 151206.	1.4	17

#	Article	IF	Citations
19	Manganese-Catalyzed Enantioselective Hydrogenation of Simple Ketones Using an Imidazole-Based Chiral PNN Tridentate Ligand. Synlett, 2020, 31, 285-289.	1.8	17
20	Ruthenium catalyzed $\hat{l}\pm$ -methylation of sulfones with methanol as a sustainable C1 source. Organic Chemistry Frontiers, 2021, 8, 120-126.	4.5	17
21	Progress of Frustrated Lewis Pairs in Catalytic Hydrogenation. Chinese Journal of Organic Chemistry, 2017, 37, 301.	1.3	17
22	B(C6F5)3-catalyzed oxidative deamination/cyclization cascade reaction of benzylamines and ketones for the synthesis of 2,4,6-triarylpyridines. Tetrahedron Letters, 2018, 59, 3678-3682.	1.4	15
23	Syntheses of <i>N</i> -Alkyl 2-Arylindoles from Saturated Ketones and 2-Arylethynylanilines via Cu-Catalyzed Sequential Dehydrogenation/Aza-Michael Addition/Annulation Cascade. Journal of Organic Chemistry, 2020, 85, 3224-3233.	3.2	14
24	Enantioselective synthesis of functionalized 1,4-dihydropyrazolo-[4′,3′:5,6]pyrano[2,3- <i>b</i>]quinolines through ferrocenyl-phosphine-catalyzed annulation of modified MBH carbonates and pyrazolones. Chemical Communications, 2021, 57, 4690-4693.	4.1	13
25	Design of chiral ferrocenylphosphine-spiro phosphonamidite ligands for ruthenium-catalyzed highly enantioselective coupling of 1,2-diols with amines. Organic Chemistry Frontiers, 2021, 8, 6830-6836.	4.5	13
26	Manganese catalyzed enantio- and regioselective hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones using an imidazole-based chiral PNN tridentate ligand. Tetrahedron Letters, 2021, 82, 153389.	1.4	10
27	Chiral Bifunctional Ferrocenylphosphineâ€Catalyzed Enantioselective Allylic Alkylation of Moritaâ^'Baylisâ^'Hillman Carbonates with Pyrazolinâ€5â€ones. Asian Journal of Organic Chemistry, 2018, 7, 2417-2421.	2.7	6
28	Iridiumâ€Catalyzed Enantioselective and Diastereoselective Hydrogenation of Racemic ⟨i⟩β'â€Ketoâ€∢i⟩βâ€Amino Esters via Dynamic Kinetic Resolution. Advanced Synthesis and Catalysis 363, 4714-4719.	, 2021,	5
29	Rh-Catalyzed Highly Enantioselective Hydrogenation of Functionalized Olefins with Chiral Ferrocenylphosphine-Spiro Phosphonamidite Ligands. Journal of Organic Chemistry, 2022, 87, 7864-7874.	3.2	4
30	Synthesis of substituted quinolines via B(C 6 F 5) 3 â€catalyzed anilineâ€aldehydeâ€pyruvate oxidative annulation. Journal of Heterocyclic Chemistry, 2019, 56, 3333-3342.	2.6	3
31	Iridium/ <i>f</i> -diaphos catalyzed asymmetric hydrogenation of 2-imidazolyl aryl/alkyl ketones. Organic and Biomolecular Chemistry, 2021, 19, 9746-9751.	2.8	2
32	Front Cover Picture: Traceless Directing Group Assisted Cobalt atalyzed Câ^'H Carbonylation of Benzylamines (Adv. Synth. Catal. 21/2017). Advanced Synthesis and Catalysis, 2017, 359, 3675-3675.	4.3	1
33	Development of [3]ferrocenophane-derived N/B frustrated Lewis pairs for the metal-free catalytic hydrogenation of imines. Synthetic Communications, 2019, 49, 522-528.	2.1	1