List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An improved modelling framework for strength and work hardening of precipitate strengthened Al–Mg–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142500.	2.6	15
2	Studying GPI zones in Al-Zn-Mg alloys by 4D-STEM. Materials Characterization, 2022, 185, 111675.	1.9	14
3	Effect of Multiply Twinned Ag(0) Nanoparticles on Photocatalytic Properties of TiO2 Nanosheets and TiO2 Nanostructured Thin Films. Nanomaterials, 2022, 12, 750.	1.9	3
4	AutomAl 6000: Semi-automatic structural labelling of HAADF-STEM images of precipitates in Al–Mg–Si(–Cu) alloys. Ultramicroscopy, 2022, 236, 113493.	0.8	3
5	The Effect of Small Additions of Fe and Heavy Deformation on the Precipitation in an Al–1.1Mg–0.5Cu–0.3Si At. Pct Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3296-3310.	1.1	1
6	Fully resolved strain field of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si78.svg"><mml:mrow><mml:msup><mml:mrow><mml:mi>î²</mml:mi></mml:mrow><mml:mrow><m precipitate calculated by density functional theory. Computational Materials Science, 2021, 187, 110054.</m </mml:mrow></mml:msup></mml:mrow></mml:math>	ıml±maa⊳â€	³
7	Microstructural and mechanical characterisation of a second generation hybrid metal extrusion & bonding aluminium-steel butt joint. Materials Characterization, 2021, 173, 110761.	1.9	9
8	Atomic structure of solute clusters in Al–Zn–Mg alloys. Acta Materialia, 2021, 205, 116574.	3.8	38
9	Comparing intergranular corrosion in Alâ€Mgâ€Si u alloys with and without αâ€Al(Fe,Mn,Cu)Si particles. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 575-584.	0.8	6
10	Quantitative analysis of {100}Al plate/lath- and <100>Al rod-shaped precipitates in an aged Al-Cu-Mg-Si alloy using TEM. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012013.	0.3	2
11	Data on atomic structures of precipitates in an Al-Mg-Cu alloy studied by high resolution transmission electron microscopy and first-principles calculations. Data in Brief, 2021, 34, 106748.	0.5	3
12	Copper enrichment on aluminium surfaces after electropolishing and its effect on electron imaging and diffraction. Materials Characterization, 2021, 172, 110846.	1.9	9
13	Precipitation processes and structural evolutions of various GPB zones and two types of S phases in a cold-rolled Al-Mg-Cu alloy. Materials and Design, 2021, 199, 109425.	3.3	31
14	Precipitation behavior of Al-Si-Cu-Mg(-Fe) alloys by a deformation-semisolid extrusion process. Materials Characterization, 2021, 173, 110863.	1.9	5
15	Linking mechanical properties to precipitate microstructure in three Al-Mg-Si(-Cu) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 807, 140862.	2.6	33
16	Detecting minute amounts of nitrogen in GaNAs thin films using STEM and CBED. Ultramicroscopy, 2021, 231, 113299.	0.8	1
17	On the microstructural origins of improvements in conductivity by heavy deformation and ageing of Al-Mg-Si alloy 6101. Materials Characterization, 2021, 176, 111073.	1.9	17
18	Studying clusters and nano-precipitates in Aluminium alloys using SPED and ADF-STEM. Microscopy and Microanalysis, 2021, 27, 3090-3094.	0.2	0

#	Article	IF	CITATIONS
19	Effect of pre-deformation on age-hardening behaviors in an Al-Mg-Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141557.	2.6	12
20	Vacancy and solute co-segregated η1 interface in over-aged Al-Zn-Mg alloys. Acta Materialia, 2021, 218, 117082.	3.8	14
21	Enhanced Mechanical Properties in 6082 Aluminum Alloy Processed by Cyclic Deformation. Metals, 2021, 11, 1735.	1.0	7
22	Precipitation in an extruded AA7003 aluminium alloy: Observations of 6xxx-type hardening phases. Materials and Design, 2020, 186, 108204.	3.3	33
23	<i>In situ</i> heating TEM observations of evolving nanoscale Al–Mg–Si–Cu precipitates. Journal of Microscopy, 2020, 279, 143-147.	0.8	11
24	The effect of heavy deformation on the precipitation in an Al-1.3Cu-1.0Mg-0.4Si†wt.% alloy. Materials and Design, 2020, 186, 108203.	3.3	16
25	The effect of low Cu additions on precipitate crystal structures in overaged Al-Mg-Si(-Cu) alloys. Materials Characterization, 2020, 160, 110087.	1.9	64
26	Nanocrystal segmentation in scanning precession electron diffraction data. Journal of Microscopy, 2020, 279, 158-167.	0.8	14
27	Grain boundary structures and their correlation with intergranular corrosion in an extruded Al-Mg-Si-Cu alloy. Materials Characterization, 2020, 170, 110695.	1.9	27
28	Detailed investigation of the shearing mechanism of \hat{l}^2 " precipitates in Al-Mg-Si alloys. MATEC Web of Conferences, 2020, 326, 01005.	0.1	6
29	Stress Corrosion Cracking in an Extruded Cu-Free Al-Zn-Mg Alloy. Metals, 2020, 10, 1194.	1.0	3
30	Multislice image simulations of sheared needleâ€like precipitates in an Alâ€Mgâ€Si alloy. Journal of Microscopy, 2020, 279, 265-273.	0.8	1
31	Unique hybrid precipitate structures forming in an Al–Cu–Mg–Si alloy. Journal of Alloys and Compounds, 2020, 826, 153977.	2.8	14
32	Scanning Precession Electron Diffraction to aid Aluminum Alloy Development. Microscopy and Microanalysis, 2019, 25, 1920-1921.	0.2	2
33	Controlling Phase Purity and Texture of K0.5Na0.5NbO3 Thin Films by Aqueous Chemical Solution Deposition. Materials, 2019, 12, 2042.	1.3	13
34	Characterisation of structural similarities of precipitates in Mg–Zn and Al–Zn–Mg alloys systems. Philosophical Magazine, 2019, 99, 2619-2635.	0.7	24
35	An unreported precipitate orientation relationship in Al-Zn-Mg based alloys. Materials Characterization, 2019, 158, 109958.	1.9	20
36	Effect of Copper Addition on Precipitation Behavior near Grain Boundary in Al–Zn–Mg Alloy. Materials Transactions, 2019, 60, 1688-1696.	0.4	20

#	Article	IF	CITATIONS
37	Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138369.	2.6	40
38	Muon Spin Relaxation Study of Solute–Vacancy Interactions During Natural Aging of Al-Mg-Si-Cu Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3446-3451.	1.1	5
39	An analytical framework for modelling intermetallic compound (<scp>IMC</scp>) formation and optimising bond strength in aluminiumâ€steel welds. Material Design and Processing Communications, 2019, 1, e57.	0.5	14
40	The Effect of Elastic Strain and Small Plastic Deformation on Tensile Strength of a Lean Al–Mg–Si Alloy. Metals, 2019, 9, 1276.	1.0	2
41	Nano-scale characterisation of sheared β―precipitates in a deformed Al-Mg-Si alloy. Scientific Reports, 2019, 9, 17446.	1.6	25
42	Comparative analysis of the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy peak-aged at relatively low and high temperatures. IOP Conference Series: Materials Science and Engineering, 2019, 672, 012027.	0.3	4
43	In situ DSC investigation into the kinetics and microstructure of dispersoid formation in Al-Mn-Fe-Si(-Mg) alloys. Materials and Design, 2018, 146, 96-107.	3.3	31
44	Orientation relationships of phase transformation in α-Al12Mn3Si pseudomorphs after plate-like Al6Mn precipitate in an AA3004 Al-Mn based alloy. Materials Characterization, 2018, 136, 367-374.	1.9	9
45	In-situ studies of multicrystalline silicon nucleation and growth on α- and β-Si3N4 coated substrates. Journal of Crystal Growth, 2018, 482, 75-84.	0.7	2
46	2aB_SS2-1Scanning precession electron diffraction used to determine precipitate microstructure and its evolution during aging in Al-Mg-Si(-Cu) alloys. Microscopy (Oxford, England), 2018, 67, i17-i17.	0.7	0
47	2aB_SS2-2The Connection Between Inter-Granular Corrosion Resistance and Precipitate Microstructure in an AA6005A Alloy. Microscopy (Oxford, England), 2018, 67, i17-i17.	0.7	Ο
48	LT-01Structure and interface of the η1-MgZn2 precipitate studied using TEM and DFT calculations. Microscopy (Oxford, England), 2018, 67, i49-i49.	0.7	0
49	Atomic Structures of Precipitates in Al–Mg–Si Alloys with Small Additions of Other Elements. Advanced Engineering Materials, 2018, 20, 1800125.	1.6	60
50	Orientation relationship between β-Si 3 N 4 and Si in multicrystalline silicon ingots for PV applications. Journal of Crystal Growth, 2018, 495, 14-19.	0.7	1
51	The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach. Materials Characterization, 2018, 142, 458-469.	1.9	68
52	Effect of Copper Addition on the Cluster Formation Behavior of Al-Mg-Si, Al-Zn-Mg, and Al-Mg-Ge in the Natural Aging. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5871-5877.	1.1	8
53	The Correlation Between Intergranular Corrosion Resistance and Copper Content in the Precipitate Microstructure in an AA6005A Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5146-5156.	1.1	14
54	Precipitates in aluminium alloys. Advances in Physics: X, 2018, 3, 1479984.	1.5	28

#	Article	IF	CITATIONS
55	Lattice rotations in precipitate free zones in an Al-Mg-Si alloy. Materials Characterization, 2018, 144, 522-531.	1.9	27
56	Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging. Materials and Design, 2017, 119, 54-64.	3.3	65
57	Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy. Micron, 2017, 96, 103-111.	1.1	65
58	Atomistic details of precipitates in lean Al–Mg–Si alloys with trace additions of Ag and Ge studied by HAADF-STEM and DFT. Philosophical Magazine, 2017, 97, 851-866.	0.7	23
59	Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping. Ultramicroscopy, 2017, 179, 57-62.	0.8	46
60	Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Advanced Structural and Chemical Imaging, 2017, 3, 9.	4.0	159
61	Quantitative strain analysis of InAs/GaAs quantum dot materials. Scientific Reports, 2017, 7, 45376.	1.6	17
62	The effects and behaviour of Li and Cu alloying agents in lean Al-Mg-Si alloys. Journal of Alloys and Compounds, 2017, 699, 235-242.	2.8	30
63	Magnetic domain configuration of (111)-oriented LaFeO3 epitaxial thin films. APL Materials, 2017, 5, .	2.2	7
64	Effects of overaging on microstructure and tensile properties of the 2055 Al-Cu-Li-Ag alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 221-231.	2.6	36
65	Bandgap measurement of high refractive index materials by off-axis EELS. Ultramicroscopy, 2017, 182, 92-98.	0.8	3
66	Atomap - Automated Analysis of Atomic Resolution STEM Images. Microscopy and Microanalysis, 2017, 23, 426-427.	0.2	1
67	Scanning Precession Electron Diffraction Study of Hybrid Precipitates in a 6xxx Series Aluminium Alloy. Microscopy and Microanalysis, 2017, 23, 114-115.	0.2	0
68	Strategy for reliable strain measurement in InAs/GaAs materials from high-resolution Z-contrast STEM images. Journal of Physics: Conference Series, 2017, 902, 012021.	0.3	2
69	Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data. Journal of Physics: Conference Series, 2017, 902, 012022.	0.3	4
70	Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner Numerical model. Acta Materialia, 2017, 122, 178-186.	3.8	65
71	Mapping the Chemistry Within, and the Strain Around, Al-alloy Precipitates at Atomic Resolution by Multi-frame Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 384-385.	0.2	0
72	Methodology to Improve Strain Measurement in III-V Semiconductors Materials. Microscopy and Microanalysis, 2017, 23, 1416-1417.	0.2	0

#	Article	IF	CITATIONS
73	Extra Electron Diffraction Spots Caused by Fine Precipitates Formed at the Early Stage of Aging in Al-Mg-X (X=Si, Ge, Zn)-Cu Alloys. Materials Transactions, 2017, 58, 167-175.	0.4	22
74	Effect of copper on fine precipitates at the early stage of aging in Al–Mg–X (X=Si, Ge, Zn) alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 2017, 67, 186-192.	0.1	2
75	Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy. Ultramicroscopy, 2016, 169, 98-106.	0.8	17
76	The effect of holding time on the size distribution of Î ² -Si3 N4 particles and nucleation undercooling in multicrystalline silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 822-826.	0.8	4
77	Thermal migration of alloying agents in aluminium. Materials Research Express, 2016, 3, 116501.	0.8	3
78	Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion – Influence of ageing temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 447-458.	2.6	20
79	Precipitation in a mixed Al–Cu–Mg/Al–Zn–Mg alloy system. Journal of Alloys and Compounds, 2016, 684, 195-200.	2.8	22
80	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">L<mml:mib><mml:mi mathvariant="normal">a<mml:mrow><mml:mn>0.7</mml:mn></mml:mrow><mml:mi< td=""><td>1.1</td><td>26</td></mml:mi<></mml:mi </mml:mib></mml:mi </mml:mrow>	1.1	26
81	mathvariant="normal">r <mml:mrow><mml:mn>0.3</mml:mn></mml:mrow> N Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy. Micron, 2016, 86, 22-29.	/In1.1	mi> < mml:msı 5
82	Compositional and structural properties of pulsed laser-deposited ZnS:Cr films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	1
83	White light emitting silicon nano-crystals-polymeric hybrid films prepared by single batch solution based method. Thin Solid Films, 2016, 603, 126-133.	0.8	5
84	Precipitation in an Al–Mg–Cu alloy and the effect of a low amount of Ag. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 91-98.	2.6	36
85	Accurately measured precipitate–matrix misfit in an Al–Mg–Si alloy by electron microscopy. Scripta Materialia, 2016, 118, 5-8.	2.6	43
86	Effect of Polar (111)-Oriented SrTiO ₃ on Initial Perovskite Growth. Crystal Growth and Design, 2016, 16, 2357-2362.	1.4	32
87	Cu atoms suppress misfit dislocations at the β″/Al interface in Al–Mg–Si alloys. Scripta Materialia, 2016, 110, 6-9.	2.6	35
88	Solute-Vacancy Clustering In Al-Mg-Si Alloys Studied By Muon Spin Relaxation Technique. Archives of Metallurgy and Materials, 2015, 60, 925-929.	0.6	6
89	Structural investigation of epitaxial LaFeO ₃ thin films on (111) oriented SrTiO ₃ by transmission electron microscopy. Journal of Physics: Conference Series, 2015, 644, 012002.	0.3	9
90	The Effect of Cu and Ge Additions on Strength and Precipitation in a lean 6xxx Aluminium Alloy. Journal of Physics: Conference Series, 2015, 644, 012028.	0.3	1

#	Article	IF	CITATIONS
91	Materials Development Aided by Atomic-Resolution Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 1515-1516.	0.2	0
92	A hybrid aluminium alloy and its zoo of interacting nano-precipitates. Materials Characterization, 2015, 106, 226-231.	1.9	16
93	Effects of Germanium, Copper, and Silver Substitutions on Hardness and Microstructure in Lean Al-Mg-Si Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4369-4379.	1.1	42
94	Structural phases driven by oxygen vacancies at the La0.7Sr0.3MnO3/SrTiO3 hetero-interface. Applied Physics Letters, 2015, 106, .	1.5	42
95	Combining HAADF STEM tomography and electron diffraction for studies of α-Al(Fe,Mn)Si dispersoids in 3xxx aluminium alloys. Philosophical Magazine, 2015, 95, 744-758.	0.7	12
96	Structural modifications and electron beam damage in aluminium alloy precipitate Î,'–AL ₂ . Philosophical Magazine, 2015, 95, 3524-3534.	0.7	14
97	<i>μ</i> SR study of Al-0.67%Mg-0.77%Si alloys. Journal of Physics: Conference Series, 2014, 551, 012031.	0.3	7
98	Clustering and Vacancy Behavior in High- and Low-Solute Al-Mg-Si Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5777-5781.	1.1	21
99	Structural investigation of precipitates with Cu and Zn atomic columns in Al-Mg-Si alloys by aberration-corrected HAADF-STEM. Journal of Physics: Conference Series, 2014, 522, 012030.	0.3	1
100	Detailed atomistic insight into the β″ phase in Al–Mg–Si alloys. Acta Materialia, 2014, 69, 126-134.	3.8	156
101	Atomic-resolution electron energy loss studies of precipitates in an Al–Mg–Si–Cu–Ag alloy. Scripta Materialia, 2014, 74, 92-95.	2.6	26
102	Improving Thermal Stability in Cu-Containing Al-Mg-Si Alloys by Precipitate Optimization. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2938-2949.	1.1	76
103	Quantum confinement of PbSe nanocrystals embedded in a spacer ZnSe matrix for solar cell applications. Solar Energy, 2014, 106, 38-42.	2.9	4
104	Aberration-corrected HAADF-STEM investigations of precipitate structures in Al–Mg–Si alloys with low Cu additions. Philosophical Magazine, 2014, 94, 520-531.	0.7	70
105	The effect of Zn on precipitation in Al–Mg–Si alloys. Philosophical Magazine, 2014, 94, 2410-2425.	0.7	54
106	Mackay icosahedron explaining orientation relationship of dispersoids in aluminium alloys. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 888-896.	0.5	7
107	Composition and orientation relationships of constituent particles in 3xxx aluminum alloys. Philosophical Magazine, 2014, 94, 556-568.	0.7	24
108	HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al–Mg–Si alloys. Acta Materialia, 2014. 78. 245-253.	3.8	52

7

#	Article	IF	CITATIONS
109	Phase stabilization principle and precipitate-host lattice influences for Al–Mg–Si–Cu alloy precipitates. Journal of Materials Science, 2014, 49, 6413-6426.	1.7	34
110	3D modelling of β′′ in Al–Mg–Si: Towards an atomistic level ab initio based examination of a full precipitate enclosed in a host lattice. Computational Materials Science, 2014, 91, 200-210.	1.4	16
111	The effects of quench rate and pre-deformation on precipitation hardening in Al–Mg–Si alloys with different Cu amounts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 72-79.	2.6	27
112	Using (S)TEM Techniques to Study Energy Related Materials at the Nanoscale. Microscopy and Microanalysis, 2014, 20, 414-415.	0.2	0
113	In-plane structural order of domain engineered La _{0.7} Sr _{0.3} MnO ₃ thin films. Philosophical Magazine, 2013, 93, 1549-1562.	0.7	9
114	Surface stability of epitaxial La0.7Sr0.3MnO3 thin films on (111)-oriented SrTiO3. Journal of Applied Physics, 2013, 113, .	1.1	31
115	Quantum confinement in two dimensional layers of PbSe/ZnSe multiple quantum well structures. Applied Physics Letters, 2013, 102, 242110.	1.5	7
116	The Effects of Low Cu Additions and Predeformation on the Precipitation in a 6060 Al-Mg-Si Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4124-4135.	1.1	67
117	Ab initio based interface modeling for fully coherent precipitates of arbitrary size in Al alloys. Computational Materials Science, 2013, 72, 146-157.	1.4	12
118	Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 567, 21-28.	2.6	111
119	How calcium prevents precipitation hardening in Al–Mg–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 575, 241-247.	2.6	9
120	Interface energy determination for the fully coherentβ″ phase in Al–Mg–Si: making a case for a first principles based hybrid atomistic modelling scheme. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 085018.	0.8	8
121	Solution based synthesis of simple fcc Si nano-crystals under ambient conditions. Dalton Transactions, 2013, 42, 2700.	1.6	8
122	Muon kinetics in heat treated Al (–Mg)(–Si) alloys. Acta Materialia, 2013, 61, 6082-6092.	3.8	19
123	Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Alî—,Mgî—,Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 154-162.	2.6	57
124	Crystalline Al _{1 â^'} <i>_x</i> Ti <i>_x</i> phases in the hydrogen cycle NaAlH ₄ + 0.02TiCl ₃ system. Philosophical Magazine, 2013, 93, 1080-1094.	^d 0.7	6
125	3D Hybrid Atomistic Modeling of β″ in Al-Mg-Si: Putting the Full Coherency of a Needle Shaped Precipitate to the Test. , 2013, , 189-194.		0
126	Probing defects in Al-Mg-Si alloys using muon spin relaxation. Physical Review B, 2012, 86, .	1.1	21

#	Article	IF	CITATIONS
127	Characterization and structure of precipitates in 6xxx Aluminium Alloys. Journal of Physics: Conference Series, 2012, 371, 012082.	0.3	10
128	Effect of room temperature storage time on precipitation in Al–Mg–Si(–Cu) alloys with different Mg/Si ratios. International Journal of Materials Research, 2012, 103, 948-954.	0.1	33
129	Quantitative HAADF-STEM on heterostructured GaAs nanowires. Journal of Physics: Conference Series, 2012, 371, 012056.	0.3	1
130	Quantitative HAADF STEM study of β-like precipitates in an Al-Mg-Ge alloy. Journal of Physics: Conference Series, 2012, 371, 012015.	0.3	1
131	Quantitative STEM Study of the β'-Ge Phase in Al-Mg-Ge Alloys. Microscopy and Microanalysis, 2012, 18, 360-361.	0.2	0
132	Domain relaxation in La0.7Sr0.3MnO3/SrTiO3 thin films due to declamping. Microscopy and Microanalysis, 2012, 18, 1868-1869.	0.2	0
133	Scanning transmission electron microscopy investigation of an Al–Mg–Si–Ge–Cu alloy. Philosophical Magazine, 2012, 92, 3983-3993.	0.7	9
134	Hydrogen Absorption Kinetics of the Transition-Metal-Chloride-Enhanced NaAlH4 System. Journal of Physical Chemistry C, 2012, 116, 14205-14217.	1.5	28
135	The location of Ti containing phases after the completion of the NaAlH4+xTiCl3 milling process. Journal of Alloys and Compounds, 2012, 513, 597-605.	2.8	18
136	Functionality of the nanoscopic crystalline Al/amorphous Al50Ti50 surface embedded composite observed in the NaAlH4+xTiCl3 system after milling. Journal of Alloys and Compounds, 2012, 514, 163-169.	2.8	14
137	Amorphous Al1â^'xTix, Al1â^'xVx, and Al1â^'xFex phases in the hydrogen cycled TiCl3, VCl3 and FeCl3 enhanced NaAlH4 systems. Journal of Alloys and Compounds, 2012, 521, 112-120.	2.8	15
138	A structural review of nanoscopic Al1â^'xTMx phase formation in the TMCIn enhanced NaAlH4 system. Journal of Alloys and Compounds, 2012, 527, 16-24.	2.8	12
139	Epitaxial relationships of ZnO nanostructures grown by Au-assisted pulsed laser deposition on c- and a-plane sapphire. Journal of Crystal Growth, 2012, 355, 52-58.	0.7	15
140	Reversal of the negative natural aging effect in Al–Mg–Si alloys. Acta Materialia, 2012, 60, 6091-6101.	3.8	72
141	Hydrogen absorption kinetics and structural features of NaAlH4 enhanced with transition-metal and Ti-based nanoparticles. International Journal of Hydrogen Energy, 2012, 37, 15175-15186.	3.8	21
142	Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. Journal of Materials Chemistry, 2012, 22, 15740.	6.7	106
143	Applying precipitate–host lattice coherency for compositional determination of precipitates in Al–Mg–Si–Cu alloys. Philosophical Magazine, 2012, 92, 3833-3856.	0.7	47
144	HAADF-STEM study of <i>β</i> ′-type precipitates in an over-aged Al–Mg–Si–Ag alloy. Philosophical Magazine, 2012, 92, 1149-1158.	0.7	45

#	Article	IF	CITATIONS
145	Aberration-corrected scanning transmission electron microscopy study of β′-like precipitates in an Al–Mg–Ge alloy. Acta Materialia, 2012, 60, 3239-3246.	3.8	24
146	Initial Studies of 6082 Aluminium Thin Films. , 2012, , 245-250.		0
147	Muon Spin Relaxation and Positron Annihilation Spectroscopy Studies of Natural Aging in Al-Mg-Si Alloys. , 2012, , 37-42.		1
148	Aberration-Corrected STEM Study of Precipitates in an Al-Mg-Si-Ge-Cu Alloy. , 2012, , 3-8.		0
149	Effect of Low Cu Amounts and Pre-Deformation on the Precipitation in Al-Mg-Si Alloys. , 2012, , 1063-1068.		Ο
150	Electron energy loss spectroscopy investigation of Pb and Ti hybridization with O at the PbTiO3/SrTiO3 interface. Journal of Applied Physics, 2011, 109, 034104.	1.1	20
151	Formation of ZnO Nanosheets Grown by Catalyst-Assisted Pulsed Laser Deposition. Crystal Growth and Design, 2011, 11, 5298-5304.	1.4	19
152	TEM characterization of pure and transition metal enhanced NaAlH4. Journal of Alloys and Compounds, 2011, 509, 281-289.	2.8	30
153	Molten salt synthesis of K ₄ Nb ₆ O ₁₇ , K ₂ Nb ₄ O ₁₁ and KNb ₃ O ₈ crystals with needle- or plate-like morphology. CrystEngComm, 2011, 13, 1304-1313.	1.3	49
154	H-initiated extended defects from plasma treatment: Comparison between c-Si and mc-Si. Journal of Physics: Conference Series, 2011, 281, 012029.	0.3	2
155	Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scripta Materialia, 2011, 64, 817-820.	2.6	84
156	Precipitates in an Al–Mg–Ge alloy studied by aberration-corrected scanning transmission electron microscopy. Acta Materialia, 2011, 59, 6103-6109.	3.8	17
157	Experimental and theoretical study of electron density and structure factors in CoSb3. Ultramicroscopy, 2011, 111, 847-853.	0.8	11
158	Vapor–solid–solid Si nano-whiskers growth using pure hydrogen as the source gas. Thin Solid Films, 2011, 519, 4613-4616.	0.8	2
159	HRTEM study of the effect of deformation on the early precipitation behaviour in an AA6060 Al–Mg–Si alloy. Philosophical Magazine, 2011, 91, 3744-3754.	0.7	56
160	Polarization control in ferroelectric PbTiO3 nanorods. Journal of Applied Physics, 2010, 108, 124320.	1.1	16
161	Precipitation in Two Al-Mg-Ge Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1907-1916.	1.1	21
162	The effects of ball milling intensity on morphology of multiwall carbon nanotubes. Scripta Materialia, 2010, 63, 637-640.	2.6	45

#	Article	IF	CITATIONS
163	Surface characterization of Pd/Ag23wt% membranes after different thermal treatments. Applied Surface Science, 2010, 256, 6121-6132.	3.1	32
164	The influence of composition and natural aging on clustering during preaging in Al–Mg–Si alloys. Journal of Applied Physics, 2010, 108, .	1.1	120
165	The Dual Nature of Precipitates in Al-Mg-Si Alloys. Materials Science Forum, 2010, 638-642, 390-395.	0.3	15
166	Electronic structure of multiferroic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BiFeO</mml:mtext></mml:mrow><mml:m related compounds: Electron energy loss spectroscopy and density functional study. Physical Review B, 2010, 82, .</mml:m </mml:msub></mml:mrow></mml:math>	11>31.1	l:mŋ>
167	Germanium network connecting precipitates in an Mg-rich Al-Mg-Ge alloy. Journal of Electron Microscopy, 2010, 59, S129-S133.	0.9	4
168	Positioning effects on quantum dot solar cells grown by molecular beam epitaxy. Applied Physics Letters, 2010, 96, .	1.5	41
169	Electron energy loss spectroscopy of theL2,3edge of phosphorus skutterudites and electronic structure calculations. Physical Review B, 2009, 80, .	1.1	9
170	Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas. Journal of Applied Physics, 2009, 105, 043507.	1.1	1
171	Transmission electron microscopy study of hydrogen defect formation at extended defects in hydrogen plasma treated multicrystalline silicon. Journal of Applied Physics, 2009, 105, 033506.	1.1	18
172	Direct Approach to Atomistic Ab Initio Studies of Precipitate Growth in Alloys. Materials Research Society Symposia Proceedings, 2009, 1229, 20901.	0.1	0
173	Microstructural studies of self-supported (1.5–10 μm) Pd/23Âwt%Ag hydrogen separation membranes subjected to different heat treatments. Journal of Materials Science, 2009, 44, 4429-4442.	1.7	23
174	Observations of nanoscopic, face centered cubic Ti and TiH x. Applied Physics A: Materials Science and Processing, 2009, 94, 787-793.	1.1	12
175	Study of defects and impurities in multicrystalline silicon grown from metallurgical silicon feedstock. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 274-277.	1.7	23
176	Thin Pd–23%Ag/stainless steel composite membranes: Long-term stability, life-time estimation and post-process characterisation. Journal of Membrane Science, 2009, 326, 572-581.	4.1	96
177	Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes. Separation and Purification Technology, 2009, 68, 403-410.	3.9	46
178	Thermal and mechanical properties of LaNbO4-based ceramics. Ceramics International, 2009, 35, 2877-2883.	2.3	57
179	Composition of βâ€3 precipitates in Al–Mg–Si alloys by atom probe tomography and first principles calculations. Journal of Applied Physics, 2009, 106, .	1.1	185
180	Microstructural characterization of self-supported 1.6î¼m Pd/Ag membranes. Journal of Membrane Science, 2008, 310, 337-348.	4.1	35

#	Article	IF	CITATIONS
181	Orientation of silicon particles in a binary Al–Si alloy. Journal of Materials Science, 2008, 43, 4962-4971.	1.7	23
182	Structural properties of the nanoscopic Al85Ti15 solid solution observed in the hydrogen-cycled NaAlH4+ 0.1TiCl3 system. Acta Materialia, 2008, 56, 4691-4701.	3.8	30
183	PbTiO ₃ nanorod arrays grown by self-assembly of nanocrystals. Nanotechnology, 2008, 19, 225605.	1.3	36
184	Precipitation in an Al-Mg-Ge Alloy. , 2008, , 395-396.		0
185	EBIC, EBSD and TEM study of grain boundaries in multicrystalline silicon cast from metallurgical feedstock. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	5
186	TEM observations of rhombohedral and monoclinic domains in LaCoO ₃ -based ceramics. Philosophical Magazine, 2008, 88, 1187-1208.	0.7	21
187	Influence of Volatile Chlorides on the Molten Salt Synthesis of Ternary Oxide Nanorods and Nanoparticles. Inorganic Chemistry, 2008, 47, 3173-3181.	1.9	49
188	Comparison of TEM specimen preparation of perovskite thin films by tripod polishing and conventional ion milling. Journal of Electron Microscopy, 2008, 57, 175-179.	0.9	26
189	Silicon Whisker Growth Using Hot Filament Reactor with Hydrogen as Source Gas. Japanese Journal of Applied Physics, 2008, 47, 4807-4809.	0.8	6
190	Detailed TEM characterization of PbTiO ₃ nanorods. Journal of Physics: Conference Series, 2008, 126, 012010.	0.3	2
191	Transmission electron microscopy characterization of NaAlH ₄ . Journal of Physics: Conference Series, 2008, 126, 012015.	0.3	2
192	A Comparative Analysis of Structural Defect Formation in Si ⁺ Implanted and then Plasma Hydrogenated and in H ⁺ Implanted Crystalline Silicon. Solid State Phenomena, 2007, 131-133, 309-314.	0.3	1
193	The Temperature Evolution of the Hydrogen Plasma Induced Structural Defects in Crystalline Silicon. Solid State Phenomena, 2007, 131-133, 315-320.	0.3	5
194	Hierarchical Nanostructures of PbTiO ₃ Through Mesocrystal Formation. Journal of Nanoscience and Nanotechnology, 2007, 7, 2538-2541.	0.9	10
195	Ab initio simulations of clustering and precipitation in Al–Mg–Si alloys. Computational Materials Science, 2007, 40, 309-318.	1.4	17
196	Self-Assembled Growth of PbTiO3Nanoparticles into Microspheres and Bur-like Structures. Chemistry of Materials, 2007, 19, 2213-2221.	3.2	80
197	The effect of Cu on precipitation in Al–Mg–Si alloys. Philosophical Magazine, 2007, 87, 3385-3413	0.7	238
198	Monoclinic Ferroelastic Domains in LaCoO ₃ â€Based Perovskites. Advanced Materials, 2007, 19, 4399-4403.	11.1	51

12

#	Article	IF	CITATIONS
199	Comparative study of the β″-phase in a 6xxx Al alloy by 3DAP and HRTEM. Surface and Interface Analysis, 2007, 39, 189-194.	0.8	24
200	Grain boundary analysis and secondary phases in LaCoO3-based perovskites. Journal of Materials Science, 2007, 42, 6267-6273.	1.7	4
201	First-principles calculations of impurity diffusion activation energies in Al. Physical Review B, 2006, 73,	1.1	37
202	Z-contrast imaging of the arrangement of Cu in precipitates in 6XXX-series aluminium alloys. Philosophical Magazine Letters, 2006, 86, 589-597.	0.5	21
203	Annular bright and dark field imaging of soft materials. Journal of Physics: Conference Series, 2006, 26, 42-45.	0.3	1
204	Characterisation of early precipitation stages in 6xxx series aluminium alloys. Journal of Physics: Conference Series, 2006, 26, 99-102.	0.3	0
205	In situ synchrotron X-ray diffraction of ferroelastic La0.8Ca0.2CoO3 ceramics during uniaxial compression. Acta Materialia, 2006, 54, 2615-2624.	3.8	24
206	Studies of self-supported 1.6μm Pd/23wt.% Ag membranes during and after hydrogen production in a catalytic membrane reactor. Catalysis Today, 2006, 118, 63-72.	2.2	48
207	Evolution of hydrogen induced defects during annealing of plasma treated Czochralski silicon. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 176-181.	0.6	12
208	Post-βâ€3 phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si alloys. Journal of Materials Science, 2006, 41, 471-478.	1.7	151
209	Mechanical properties of mixed conducting La0.5Sr0.5Fe1â^'x Co x O3â^'δ (0≤â‰⊉) materials. Journal of Solid State Electrochemistry, 2006, 10, 635-642.	1.2	32
210	Electronic properties of polycrystalline LaFeO. Part I: Experimental results and the qualitative role of Schottky defects. Solid State Ionics, 2005, 176, 2783-2790.	1.3	50
211	Stress-Strain Behavior During Compression of Polycrystalline La1-xCaxCoO3 Ceramics. Journal of the American Ceramic Society, 2005, 88, 726-730.	1.9	35
212	Electron-microscopy studies of NaAlH4 with TiF3 additive: hydrogen-cycling effects. Applied Physics A: Materials Science and Processing, 2005, 80, 709-715.	1.1	53
213	The influence of alloy composition on precipitates of the Al-Mg-Si system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 691-702.	1.1	47
214	The influence of alloy composition on precipitates of the Alâ^'Mgâ^'Si system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 691-702.	1.1	91
215	A study of charge density in copper. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, 223-230.	0.3	16
216	Imaging of out-of-plane interfacial strain in epitaxial PbTiO3â^•SrTiO3 thin films. Applied Physics Letters, 2005, 86, 092907.	1.5	23

#	Article	IF	CITATIONS
217	Transmission Electron Microscopy Studies of 5-cycled Na Alanate with Ti Based Additive. Materials Research Society Symposia Proceedings, 2005, 884, 1.	0.1	0
218	Analytical Electron Microscopy Studies of Lithium Aluminum Hydrides with Ti- and V-Based Additives. Journal of Physical Chemistry B, 2005, 109, 4350-4356.	1.2	21
219	Electron microscopy studies of lithium aluminium hydrides. Journal of Alloys and Compounds, 2005, 395, 307-312.	2.8	23
220	Electron density and implication for bonding in Cu. Physical Review B, 2004, 69, .	1.1	18
221	Extinction-free electron diffraction refinement of bonding in SrTiO3. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, 402-408.	0.3	24
222	Anodic oxidation during electrostatic bonding. Philosophical Magazine, 2004, 84, 505-519.	0.7	18
223	Electron microscopy studies of a TbNiAl compound processed by the HDDR route. Journal of Alloys and Compounds, 2003, 356-357, 658-663.	2.8	2
224	Magnesium: Comparison of density functional theory calculations with electron and x-ray diffraction experiments. Journal of Chemical Physics, 2003, 119, 11359-11366.	1.2	44
225	Quantitative Convergent Beam Electron Diffraction Measurements of Low-Order Structure Factors in Copper. Microscopy and Microanalysis, 2003, 9, 379-389.	0.2	13
226	TEM studies of TbNiAl in the Disproportionation Stage of the HDDR Process. Microscopy and Microanalysis, 2002, 8, 1436-1437.	0.2	0
227	The embedded-atom model applied to vacancy formation in bulk aluminium and lithium. Journal of Physics Condensed Matter, 1999, 11, 3663-3677.	0.7	6
228	Use of quantitative convergent-beam electron diffraction in materials science. , 1999, 46, 130-145.		14
229	Use of Supercomputers in Quantitative Electron Diffraction. Journal of Scientific Computing, 1998, 13, 1-18.	1.1	1
230	A Study of Vacancies in Pure Aluminium and Their Role in the Diffusion of Lithium in a Dilute Al-Li Alloy Using the Embedded Atom Model. Materials Research Society Symposia Proceedings, 1998, 538, 359.	0.1	1
231	Experimental and theoretical investigations of EELS near-edge fine structure in TiAl with and without ternary addition of V, Cr, or Mn. Physical Review B, 1998, 57, 1585-1593.	1.1	5
232	A new approach to lattice parameter measurements using dynamic electron diffraction and pattern matching. Journal of Electron Microscopy, 1998, 47, 121-127.	0.9	36
233	Charge-density determination in TiAl-Cr and TiAl-V using quantitative convergent-beam electron diffraction. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 1231-1254.	0.8	13
234	Electronic Structure Investigations of Î ³ -Tial Microscopy and Microanalysis, 1997, 3, 995-996.	0.2	0

#	Article	IF	CITATIONS
235	Determination of Atomic Positions in SiC 4H Using Quantitative Convergent Beam Refinements. Microscopy and Microanalysis, 1997, 3, 1051-1052.	0.2	0
236	Efficient beam-selection criteria in quantitative convergent beam electron diffraction. Ultramicroscopy, 1996, 66, 89-99.	0.8	22
237	Effect of Mn doping on charge density in γ-TiAl by quantitative convergent beam electron diffraction. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1995, 72, 579-601.	0.8	42
238	Multiple plasmon scattering contributions to CBED contrast. Proceedings Annual Meeting Electron Microscopy Society of America, 1995, 53, 132-133.	0.0	0
239	Analytical filtering of low-angle inelastic scattering contributions toCBED contrast. Ultramicroscopy, 1994, 55, 268-275.	0.8	4
240	Commercial spectrometer modifications for energy filtering of electron diffraction patterns and images. Ultramicroscopy, 1993, 52, 454-458.	0.8	5
241	Structure factor determination in non-centrosymmetric crystals by a two-dimensional CBED-based multi-parameter refinement method. Ultramicroscopy, 1993, 49, 159-170.	0.8	23
242	Many-parameter refinements from CBED pattern. Micron and Microscopica Acta, 1992, 23, 137-138.	0.2	2
243	The Crystal Structure of the β'-Phase Including Ag in Al-Mg-Si-Ag Alloy. Advanced Materials Research, 0, 409, 67-70.	0.3	4
244	Effect of Additional Elements (Cu, Ag) on Precipitation in 6xxx (Al-Mg-Si) Alloys. Materials Science Forum, 0, 706-709, 357-360.	0.3	3
245	Effect of Low Cu Addition and Thermo-Mechanical History on Precipitation in Al-Mg-Si Alloys. Materials Science Forum, 0, 794-796, 1014-1019.	0.3	3
246	The Effect of Elastic Straining on a 6060 Aluminium Alloy during Natural or Artificial Ageing. Materials Science Forum, 0, 794-796, 1205-1210.	0.3	0
247	Influence of Low Cu Addition on Quench Sensitivity in Al-Mg-Si Alloys. Advanced Materials Research, 0, 922, 616-621.	0.3	1
248	Ageing Characteristics of Al-Mg-(Ge,Si)-Cu Alloys. Materials Science Forum, 0, 794-796, 971-976.	0.3	3
249	Interfacial and Strain Energy Analysis from <i>Ab Initio</i> Based Hierarchical Multi-Scale Modelling: The Al-Mg-Si Alloy β'' Phase. Materials Science Forum, 0, 794-796, 640-645.	0.3	4
250	Atomic-Resolution Elemental Mapping of Precipitates in a 7449 Aluminium Alloy. Materials Science Forum, 0, 794-796, 63-67.	0.3	3
251	Orientation Studies of α-Al(Fe,Mn)Si Dispersoids in 3xxx Al Alloys. Materials Science Forum, 0, 794-796, 39-44.	0.3	7
252	Directionality and Column Arrangement Principles of Precipitates in Al-Mg-Si-(Cu) and Al-Mg-Cu Linked to Line Defect in Al. Materials Science Forum, 0, 877, 461-470.	0.3	15

#	Article	IF	CITATIONS
253	3D Hybrid Atomistic Modeling of β″ in Al-Mg-Si: Putting the Full Coherency of a Needle Shaped Precipitate to the Test. , 0, , 189-194.		ο
254	Nanostructural Analysis of Coâ€Re/γâ€Al2O3 Fischerâ€Tropsch Catalyst by TEM and XRD. ChemCatChem, 0, , .	1.8	0