
Xing Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4442037/publications.pdf Version: 2024-02-01

XINC FENC

#	Article	IF	CITATIONS
1	Pyrene-based aggregation-induced emission luminogens and their applications. Materials Chemistry Frontiers, 2019, 3, 762-781.	3.2	234
2	Functionalization of Pyrene To Prepare Luminescent Materials—Typical Examples of Synthetic Methodology. Chemistry - A European Journal, 2016, 22, 11898-11916.	1.7	202
3	Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AlEgens at Ultralow Concentration. Chemistry of Materials, 2018, 30, 4778-4787.	3.2	154
4	Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chemical Science, 2018, 9, 5679-5687.	3.7	119
5	Trivalent Chromium Ions Doped Fluorides with Both Broad Emission Bandwidth and Excellent Luminescence Thermal Stability. ACS Applied Materials & Interfaces, 2021, 13, 18274-18282.	4.0	113
6	A red phosphor Mg3Y2Ge3O12: Bi3+, Eu3+ with high brightness and excellent thermal stability of luminescence for white light-emitting diodes. Journal of Luminescence, 2019, 210, 202-209.	1.5	83
7	Pyrene-based blue emitters with aggregation-induced emission features for high-performance organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2283-2290.	2.7	78
8	A turn-off fluorescent probe for the detection of Cu ²⁺ based on a tetraphenylethylene-functionalized salicylaldehyde Schiff-base. Materials Chemistry Frontiers, 2020, 4, 1500-1506.	3.2	66
9	Stable cucurbit[5]uril MOF structures as †beaded' rings built on a p-hydroxybenzoic acid template—a small molecule absorption material. CrystEngComm, 2011, 13, 5049.	1.3	63
10	A Substitutionâ€Dependent Lightâ€Up Fluorescence Probe for Selectively Detecting Fe ³⁺ lons and Its Cell Imaging Application. Advanced Functional Materials, 2018, 28, 1802833.	7.8	62
11	Pyrene-based aggregation-induced emission luminogens (AlEgens) with less colour migration for anti-counterfeiting applications. Journal of Materials Chemistry C, 2021, 9, 12828-12838.	2.7	58
12	Blue-Emitting Butterfly-Shaped 1,3,5,9-Tetraarylpyrenes: Synthesis, Crystal Structures, and Photophysical Properties. Organic Letters, 2013, 15, 1318-1321.	2.4	53
13	Pyrene-based aggregation-induced emission luminogens (AlEgen): structure correlated with particle size distribution and mechanochromism. Journal of Materials Chemistry C, 2019, 7, 6932-6940.	2.7	53
14	An Efficient Approach to the Synthesis of Novel Pyrene-Fused Azaacenes. Organic Letters, 2013, 15, 3594-3597.	2.4	48
15	Pyreneâ€Based Yâ€shaped Solidâ€State Blue Emitters: Synthesis, Characterization, and Photoluminescence. Chemistry - an Asian Journal, 2012, 7, 2854-2863.	1.7	46
16	Pyrene-cored blue-light emitting [4]helicenes: synthesis, crystal structures, and photophysical properties. Organic and Biomolecular Chemistry, 2013, 11, 2186.	1.5	46
17	Approach to 10-Unit "Bracelet―Frameworks Based on Coordination of Alkyl-Substituted Cucurbit[5]urils and Potassium Ions. Crystal Growth and Design, 2010, 10, 5113-5116.	1.4	45
18	Non‣ayered Te/In ₂ S ₃ Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse. Small, 2022, 18, e2200445.	5.2	38

XING FENG

#	Article	IF	CITATIONS
19	Pyrene-Based Approach to Tune Emission Color from Blue to Yellow. Journal of Organic Chemistry, 2017, 82, 7176-7182.	1.7	37
20	Near-infrared quantum cutting via energy transfer in Bi3+, Yb3+ co-doped Lu2GeO5 down-converting phosphor. Journal of Alloys and Compounds, 2019, 784, 611-619.	2.8	37
21	Regioselective Substitution at the 1,3- and 6,8-Positions of Pyrene for the Construction of Small Dipolar Molecules. Journal of Organic Chemistry, 2015, 80, 10973-10978.	1.7	36
22	An approach to networks based on coordination of alkyl-substituted cucurbit[5]urils and potassium ions. CrystEngComm, 2013, 15, 1994.	1.3	33
23	Complexation of Cyclohexanocucurbit[6]uril with Cadmium Ions: X-ray Crystallographic and Electrochemical Study. Inorganic Chemistry, 2010, 49, 7638-7640.	1.9	32
24	New <scp>Quinoxalineâ€Based</scp> Blue Emitters: Molecular Structures, <scp>Aggregationâ€Induced</scp> Enhanced Emission Characteristics and <scp>OLED</scp> Application. Chinese Journal of Chemistry, 2021, 39, 2154-2162.	2.6	31
25	Coordination and Supramolecular Self-Assemblies of Alkali and Alkaline Earth Metal Ions to Cucurbit[5]uril in the Presence of Nitrophenol. Crystal Growth and Design, 2011, 11, 5712-5722.	1.4	30
26	Highly emissive hand-shaped π-conjugated alkynylpyrenes: Synthesis, structures, and photophysical properties. Organic and Biomolecular Chemistry, 2012, 10, 2255.	1.5	30
27	Synthesis and photophysical properties of novel butterfly-shaped blue emitters based on pyrene. Organic and Biomolecular Chemistry, 2013, 11, 8366.	1.5	29
28	Tetraphenylethylene-based color-tunable AIE-ESIPT chromophores. Dyes and Pigments, 2020, 175, 108175.	2.0	28
29	Throughâ€Space CBr··Ĩ€ Halogen Interaction: Efficient Modulation of Reactionâ€Based Photochromism and Photoluminescence at Crystalline States for Irradiation Timeâ€Dependent Antiâ€Counterfeiting. Advanced Functional Materials, 2021, 31, 2009024.	7.8	27
30	Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. ACS Nano, 2021, 15, 9924-9934.	7.3	27
31	Yâ€Shaped Pyreneâ€Based Aggregationâ€Induced Emission Blue Emitters for Highâ€Performance OLED Devices. Advanced Optical Materials, 2022, 10, .	3.6	26
32	A novel two-dimensional network formed by complexation of cucurbituril with cadmium ions. Inorganic Chemistry Communication, 2009, 12, 849-852.	1.8	25
33	Pyrene-based color-tunable dipolar molecules: Synthesis, characterization and optical properties. Dyes and Pigments, 2018, 153, 125-131.	2.0	25
34	Dynamic Coordination between a Triphenylamine-Functionalized Salicylaldehyde Schiff Base and a Copper(II) Ion. Inorganic Chemistry, 2021, 60, 8581-8591.	1.9	25
35	Design and Synthesis of Self-assembly Supramolecular Entities Based on Noncovalent Interaction of Cucurbit[5]uril, Metal Ions, and Hydroxybenzene or Its Derivatives. Crystal Growth and Design, 2010, 10, 2901-2907.	1.4	23
36	Synthesis, structural and spectral properties of diarylamino-functionalized pyrene derivatives via Buchwald–Hartwig amination reaction. Journal of Molecular Structure, 2013, 1035, 19-26.	1.8	22

XING FENG

#	Article	IF	CITATIONS
37	Enhanced near infrared luminescence of Lu2GeO5: Nd3+ by the co-doping of Bi3+. Journal of Luminescence, 2019, 206, 278-283.	1.5	19
38	Influence of substituent position on thermal properties, photoluminescence and morphology of pyrene–fluorene derivatives. Journal of Molecular Structure, 2015, 1086, 216-222.	1.8	18
39	Multiple Photoluminescence from Pyreneâ€Fused Hexaarylbenzenes with Aggregationâ€Enhanced Emission Features. Asian Journal of Organic Chemistry, 2018, 7, 444-450.	1.3	18
40	lron(<scp>iii</scp>) bromide catalyzed bromination of 2-tert-butylpyrene and corresponding position-dependent aryl-functionalized pyrene derivatives. RSC Advances, 2015, 5, 8835-8848.	1.7	17
41	Twoâ€Photonâ€Absorption Properties of Pyreneâ€Based Dipolar Dâ€ï€â€A Fluorophores. ChemPhotoChem, 2018 2, 749-756.	⁹ ,1.5	17
42	Tunable Polarity Behavior and High-Performance Photosensitive Characteristics in Schottky-Barrier Field-Effect Transistors Based on Multilayer WS ₂ . ACS Applied Materials & Interfaces, 2018, 10, 2745-2751.	4.0	17
43	Intermolecular Hydrogen-Bond-Assisted Solid-State Dual-Emission Molecules with Mechanical Force-Induced Enhanced Emission. Journal of Organic Chemistry, 2022, 87, 8503-8514.	1.7	16
44	Aggregationâ€induced emission luminogen: A new perspective in the photoâ€degradation of organic pollutants. EcoMat, 2020, 2, e12024.	6.8	14
45	Stimuliâ€Responsive Materials from Ferroceneâ€Based Organic Small Molecule for Wearable Sensors. Small, 2021, 17, e2103125.	5.2	14
46	Synthesis and fluorescence emission properties of 1,3,6,8-tetraarylpyrenes. Journal of Molecular Structure, 2013, 1047, 194-203.	1.8	13
47	Synthesis, Structural, and Photophysical Properties of the First Member of the Class of Pyreneâ€Based [4]Helicenes. European Journal of Organic Chemistry, 2013, 2013, 5829-5837.	1.2	13
48	Synthesis, Structure and Photophysical Properties of Pyrene–based [5]Helicenes: an Experimental and Theoretical Study. ChemistrySelect, 2017, 2, 1436-1441.	0.7	13
49	Pd-Immobilized Schiff Base Double-Layer Macrocycle: Synthesis, Structures, Peroxidase Mimic Activity, and Antibacterial Performance. ACS Applied Materials & amp; Interfaces, 2022, 14, 1423-1433.	4.0	12
50	D-Ï€-D chromophores based on dithieno[3,2-b:2',3'-d]thiophene (DTT): Potential application in the fabrication of solar cell. Tetrahedron, 2017, 73, 307-312.	1.0	11
51	Preparation and luminescence properties of white light-emitting phosphors LaAl2.03B4O10.54: Dy3+. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	11
52	Anthracene-based derivatives: Synthesis, photophysical properties and electrochemical properties. Chemical Research in Chinese Universities, 2017, 33, 603-610.	1.3	11
53	Demethylation of 5,n-di-tert-butyl-8,n-dimethoxy[2.n]metacyclophane-1-ynes with BBr3 to afford novel [n]benzofuranophanes. Journal of Molecular Structure, 2016, 1122, 247-255.	1.8	10
54	Steric influences on the photophysical properties of pyrene-based derivatives; mechanochromism and their pH-responsive ability. Dyes and Pigments, 2022, 200, 110123.	2.0	10

XING FENG

#	Article	IF	CITATIONS
55	Lipid Droplet-Specific Red Aggregation-Induced Emission Luminogens: Fast Light-Up of Gram-Positive Pathogens for Identification of Bacteria. , 2022, 4, 1523-1530.		10
56	Exploring thieno[3,4-c]pyrrole-4,6-dione combined thiophene as π-bridge to construct non-fullerene acceptors with high VOC beyond 1.0ÂV. Dyes and Pigments, 2020, 178, 108335.	2.0	9
57	Pyrene-fused hexaarylbenzene luminogens: Synthesis, characterization, and aggregation-induced emission enhancement. Dyes and Pigments, 2021, 192, 109452.	2.0	9
58	Conformation-dependent mechanochromic delayed fluorescence of AIE-active tetra-coordinated B–N complexes. Dyes and Pigments, 2021, 196, 109776.	2.0	9
59	Synthesis, crystal structure and photophysical properties of 5-mono- and 5,9-bis-(arylethynyl)-functionalized pyrenes. Journal of Luminescence, 2013, 141, 111-120.	1.5	6
60	Synthesis and fluorescence emission properties of D-Ï€-D monomers based on dithieno[3,2-b:2′,3′-d]thiophene. Journal of Luminescence, 2017, 188, 388-393.	1.5	6
61	Synthesis, Structures and DFT Computational Studies of [3.1.1]Metacyclophanes Containing Benzofuran Rings. ChemistrySelect, 2018, 3, 13542-13547.	0.7	6
62	Synthesis, Structures and Lewisâ€Acidâ€Induced Isomerization of 8â€Methoxy[2.2]metaparacyclophanes and a DFT Study. ChemistrySelect, 2019, 4, 3630-3635.	0.7	6
63	Synthesis and photoreaction of polymethyl substituted [2.2]metaparacyclophanes. Journal of Molecular Structure, 2013, 1037, 271-275.	1.8	5
64	Adjusting the structure and luminescence properties of Sr _{2â^'<i>x</i>} Ba _{<i>x</i>} MgAl ₂₂ O ₃₆ :Eu ²⁺ phosphors by Sr:Ba ratio. Luminescence, 2018, 33, 1371-1376.	1.5	5
65	The effect of Sr/Ba ratio on the structure and luminescence properties of phosphors Sr2-Ba MgGeO7: Pb2+. Optik, 2018, 174, 56-61.	1.4	5
66	Aggregationâ€Induced Emission Luminogens for Direct Exfoliation of 2D Layered Materials in Ethanol. Advanced Materials Interfaces, 2020, 7, 2000795.	1.9	5
67	Pyreneâ€fused Dibenzoazatetracenes: Synthesis, Crystal Structures, Photophysical Properties and their Morphologies. Asian Journal of Organic Chemistry, 2021, 10, 233-240.	1.3	5
68	An Air-Stable Organic Radical from a Controllable Photoinduced Domino Reaction of a Hexa-aryl Substituted Anthracene. Journal of Organic Chemistry, 2021, 86, 7359-7369.	1.7	5
69	Pyreneâ€Fused Pyrazaacenes with Eight Rectilinearly Arranged Aromatic Rings. Asian Journal of Organic Chemistry, 2019, 8, 155-160.	1.3	4
70	Extended Ï€â€Conjugated Pyrene Derivatives: Structural, Photophysical and Electrochemical Properties. ChemistrySelect, 2016, 1, 1926-1932.	0.7	3
71	Studies on Lewisâ€Acid Induced Reactions of 8â€Methoxy[2.2]metacyclophanes: A New Synthetic Route to Alkylated Pyrenes. ChemistrySelect, 2020, 5, 1269-1274.	0.7	3
72	Pyrene-based asymmetric hexaarylbenzene derivatives: Synthesis, crystal structures, and photophysical properties. Journal of Luminescence, 2022, 243, 118653.	1.5	3

Xing Feng

#	Article	IF	CITATIONS
73	Tunable fluorescence emission for multi-color light-emitting diodes and voice-activated intelligent lighting applications. Journal of Materials Chemistry C, 0, , .	2.7	3
74	Synthesis and Structure of 2,3-Bis(5-tert-butyl-2-methoxyphenyl)buta-1,3-diene by Bromine Elimination of (Z)-1,4-Dibromo-2,3-bis(5-tert-butyl-2-methoxyphenyl)-2-butene. Synthetic Communications, 2012, 42, 3128-3139.	1.1	1
75	Synthesis and photophysical properties of quinoxaline-based blue aggregation-induced emission molecules. Canadian Journal of Chemistry, 2022, 100, 370-377.	0.6	1
76	Synthesis and Photophysical Properties of Benzothiadiazole-Based Luminescence Materials with Tunable Emission Properties. Journal of Molecular Structure, 2022, , 133435.	1.8	0