Qingsheng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4441975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoS ₂ –Ni ₃ S ₂ Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2017, 7, 2357-2366.	11.2	963
2	Hierarchical MoS ₂ /Polyaniline Nanowires with Excellent Electrochemical Performance for Lithiumâ€lon Batteries. Advanced Materials, 2013, 25, 1180-1184.	21.0	569
3	Heteronanowires of MoC–Mo ₂ C as efficient electrocatalysts for hydrogen evolution reaction. Chemical Science, 2016, 7, 3399-3405.	7.4	532
4	Structural Design and Electronic Modulation of Transitionâ€Metalâ€Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1802880.	21.0	422
5	Cobaltâ€Đoping in Molybdenum arbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2016, 26, 5590-5598.	14.9	400
6	Phosphorus-Mo ₂ C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy and Environmental Science, 2017, 10, 1262-1271.	30.8	379
7	CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 242, 132-139.	20.2	198
8	Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6006-6013.	10.3	195
9	Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery. Electrochemistry Communications, 2008, 10, 118-122.	4.7	163
10	Molybdenum Carbideâ€Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 3544-3548.	13.8	145
11	Mesoporous Mo ₂ C/N-doped carbon heteronanowires as high-rate and long-life anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10842-10849.	10.3	143
12	MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. Journal of Power Sources, 2008, 179, 357-360.	7.8	142
13	Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. Journal of Materials Chemistry, 2010, 20, 2807.	6.7	141
14	Synthesis of Nanoporous Molybdenum Carbide Nanowires Based on Organicâ^'Inorganic Hybrid Nanocomposites with Sub-Nanometer Periodic Structures. Chemistry of Materials, 2009, 21, 5560-5562.	6.7	130
15	Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochemistry Communications, 2010, 12, 418-421.	4.7	123
16	Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 244, 620-627.	20.2	122
17	Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution. Journal of Power Sources, 2015, 275, 588-594.	7.8	113
18	Hierarchical MoO2/N-doped carbon heteronanowires with high rate and improved long-term performance for lithium-ion batteries. Journal of Power Sources, 2016, 306, 78-84.	7.8	112

#	Article	IF	CITATIONS
19	Microwave-Assisted Reactant-Protecting Strategy toward Efficient MoS ₂ Electrocatalysts in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23741-23749.	8.0	107
20	Electrospinning Heteroâ€Nanofibers of Fe ₃ Câ€Mo ₂ C/Nitrogenâ€Dopedâ€Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem, 2017, 10, 2597-2604.	6.8	100
21	One-dimensional growth of MoOx-based organic–inorganic hybrid nanowires with tunable photochromic properties. Journal of Materials Chemistry, 2012, 22, 4709.	6.7	98
22	Hierarchical MoO ₂ /Mo ₂ C/C Hybrid Nanowires as High-Rate and Long-Life Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 19987-19993.	8.0	92
23	Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 2020, 12, 15944-15969.	5.6	83
24	High-Concentration Preparation of Silver Nanowires: Restraining <i>in Situ</i> Nitric Acidic Etching by Steel-Assisted Polyol Method. Chemistry of Materials, 2008, 20, 1699-1704.	6.7	77
25	Plasma-Engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118441.	20.2	69
26	Biomimetic Oxygen Activation by MoS ₂ /Ta ₃ N ₅ Nanocomposites for Selective Aerobic Oxidation. Angewandte Chemie - International Edition, 2012, 51, 11740-11744.	13.8	66
27	Hierarchical Mo2C@MoS2 nanorods as electrochemical sensors for highly sensitive detection of hydrogen peroxide and cancer cells. Sensors and Actuators B: Chemical, 2020, 311, 127863.	7.8	60
28	Synthesis and Characterization of Organic–Inorganic Hybrid GeO _{<i>x</i>} /Ethylenediamine Nanowires. Advanced Materials, 2008, 20, 1837-1842.	21.0	59
29	Metallic Cobalt@Nitrogen-Doped Carbon Nanocomposites: Carbon-Shell Regulation toward Efficient Bi-Functional Electrocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 37721-37730.	8.0	59
30	Pd–Ag Alloy Electrocatalysts for CO ₂ Reduction: Composition Tuning to Break the Scaling Relationship. ACS Applied Materials & Interfaces, 2019, 11, 33074-33081.	8.0	56
31	Controlled Synthesis of Tantalum Oxynitride and Nitride Nanoparticles. Small, 2011, 7, 3334-3340.	10.0	53
32	MoS2 Nanosheets with Conformal Carbon Coating as Stable Anode Materials for Sodium-Ion Batteries. Electrochimica Acta, 2017, 254, 172-180.	5.2	53
33	SiO ₂ ‣urfaceâ€Assisted Controllable Synthesis of TaON and Ta ₃ N ₅ Nanoparticles for Alkene Epoxidation. Angewandte Chemie - International Edition, 2012, 51, 961-965.	13.8	52
34	Metal non-oxide nanostructures developed from organic–inorganic hybrids and their catalytic application. Nanoscale, 2014, 6, 14106-14120.	5.6	52
35	N-doped carbon encapsulated CoMoO4 nanorods as long-cycle life anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 576, 176-185.	9.4	50
36	Controllable Synthesis of Organic–Inorganic Hybrid MoO _{<i>x</i>} /Polyaniline Nanowires and Nanotubes. Chemistry - A European Journal, 2011, 17, 1465-1472.	3.3	49

#	Article	IF	CITATIONS
37	Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment. Journal of Colloid and Interface Science, 2019, 549, 50-62.	9.4	48
38	Expanding the interlayers of molybdenum disulfide toward the highly sensitive sensing of hydrogen peroxide. Nanoscale, 2019, 11, 6644-6653.	5.6	48
39	Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 299, 708-716.	5.2	48
40	Isolated Cobalt Atoms on N-Doped Carbon as Nanozymes for Hydrogen Peroxide and Dopamine Detection. ACS Applied Nano Materials, 2021, 4, 7954-7962.	5.0	47
41	Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. Journal of Molecular Catalysis A, 2016, 425, 248-254.	4.8	45
42	Preparation of supported Mo2C-based catalysts from organic–inorganic hybrid precursor for hydrogen production from methanol decomposition. Chemical Communications, 2010, 46, 6494.	4.1	41
43	Preparation of organic–inorganic hybrid Fe–MoO _x /polyaniline nanorods as efficient catalysts for alkene epoxidation. Chemical Communications, 2012, 48, 260-262.	4.1	41
44	Enhancing Metal–Support Interactions by Molybdenum Carbide: An Efficient Strategy toward the Chemoselective Hydrogenation of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2016, 22, 5698-5704.	3.3	40
45	Efficient electrochemical detection of cancer cells on in situ surface-functionalized MoS ₂ nanosheets. Journal of Materials Chemistry B, 2017, 5, 5532-5538.	5.8	40
46	Interlayer engineering of molybdenum disulfide toward efficient electrocatalytic hydrogenation. Science Bulletin, 2021, 66, 1003-1012.	9.0	39
47	Inherent Oxygen Vacancies Boost Surface Reconstruction of Ultrathin Ni-Fe Layered-Double-Hydroxides toward Efficient Electrocatalytic Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 7390-7399.	6.7	36
48	Popcorn derived carbon enhances the cyclic stability of MoS2 as an anode material for sodium-ion batteries. Electrochimica Acta, 2019, 309, 25-33.	5.2	35
49	Mo ₂ C/Reducedâ€Grapheneâ€Oxide Nanocomposite: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ChemElectroChem, 2016, 3, 2110-2115.	3.4	31
50	Ni/Mo2C nanowires and their carbon-coated composites as efficient catalysts for nitroarenes hydrogenation. Applied Surface Science, 2017, 396, 339-346.	6.1	31
51	MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries. Electrochimica Acta, 2018, 277, 205-210.	5.2	30
52	Carbon-Based Nanomaterials as Sustainable Noble-Metal-Free Electrocatalysts. Frontiers in Chemistry, 2019, 7, 759.	3.6	29
53	In-situ reconstruction of catalysts in cathodic electrocatalysis: New insights into active-site structures and working mechanisms. Journal of Energy Chemistry, 2022, 70, 414-436.	12.9	28
54	Molybdenum Carbideâ€Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 3572-3576.	2.0	27

#	Article	IF	CITATIONS
55	Construction of Single-Phase Nickel Disulfide Microflowers as High-Performance Electrodes for Hybrid Supercapacitors. Energy & Fuels, 2020, 34, 10178-10187.	5.1	27
56	The production of carbon nanospheres by the pyrolysis of polyacrylonitrile. Carbon, 2008, 46, 1816-1818.	10.3	25
57	Hydrogen Doping into MoO ₃ Supports toward Modulated Metal–Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts. Chemistry - an Asian Journal, 2018, 13, 641-647.	3.3	25
58	MoS2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide. Mikrochimica Acta, 2018, 185, 287.	5.0	25
59	Mesoporous and Skeletal Molybdenum Carbide for Hydrogen Evolution Reaction: Diatomiteâ€Type Structure and Formation Mechanism. ChemElectroChem, 2017, 4, 2169-2177.	3.4	24
60	Bimetallic Platinumâ€Tin Nanoparticles on Hydrogenated Molybdenum Oxide for the Selective Hydrogenation of Functionalized Nitroarenes. ChemCatChem, 2017, 9, 4199-4205.	3.7	24
61	Organicâ^'Inorganicâ€Hybridâ€Derived Molybdenum Carbide Nanoladders: Impacts of Surface Oxidation for Hydrogen Evolution Reaction. ChemNanoMat, 2018, 4, 194-202.	2.8	23
62	Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. Journal of Materials Chemistry A, 2021, 9, 12152-12160.	10.3	23
63	Mo 2 C/N-doped carbon nanowires as anode materials for sodium-ion batteries. Materials Letters, 2017, 194, 30-33.	2.6	22
64	CoxNi1â^'x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. Journal of Catalysis, 2019, 372, 277-286.	6.2	21
65	Efficient electrochemical biosensing of hydrogen peroxide on bimetallic Mo1-xWxS2 nanoflowers. Journal of Colloid and Interface Science, 2020, 566, 248-256.	9.4	21
66	Nickel sulfide-oxide heterostructured electrocatalysts: Bi-functionality for overall water splitting and in-situ reconstruction. Journal of Colloid and Interface Science, 2022, 622, 728-737.	9.4	21
67	Molybdenum carbide supported by N-doped carbon: Controlled synthesis and application in electrocatalytic hydrogen evolution reaction. Materials Letters, 2016, 176, 101-105.	2.6	20
68	MoC nanodots toward efficient electrocatalytic hydrogen evolution: an interlayer-confined strategy with a 2D-zeolite precursor. Journal of Materials Chemistry A, 2021, 9, 4724-4733.	10.3	19
69	Chemoselective Hydrogenation of Cinnamaldehyde on Ironâ€Oxide Modified Pt/MoO _{3â^'y} Catalysts. Chemistry - an Asian Journal, 2018, 13, 3737-3744.	3.3	18
70	Molybdenum-Incorporated Mesoporous Silica: Surface Engineering toward Enhanced Metal–Support Interactions and Efficient Hydrogenation. ACS Applied Materials & Interfaces, 2018, 10, 42475-42483.	8.0	17
71	Revealing Facet Effects of Palladium Nanocrystals on Electrochemical Biosensing. ACS Applied Materials & amp; Interfaces, 2020, 12, 15622-15630.	8.0	16
72	Nickel-doped Co4N nanowire bundles as efficient electrocatalysts for oxygen evolution reaction. Science China Materials, 2021, 64, 1889-1899.	6.3	16

#	Article	IF	CITATIONS
73	Enhancing formaldehyde oxidation on iridium catalysts using hydrogenated TiO ₂ supports. New Journal of Chemistry, 2018, 42, 18381-18387.	2.8	15
74	Nobleâ€Metalâ€Free Electrocatalysts: Structural Design and Electronic Modulation of Transitionâ€Metalâ€Carbide Electrocatalysts toward Efficient Hydrogen Evolution (Adv. Mater. 2/2019). Advanced Materials, 2019, 31, 1970009.	21.0	15
75	Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation. Chinese Chemical Letters, 2022, 33, 2845-2855.	9.0	15
76	Chinese ink-promoted co-assembly synthesis of 3D hierarchically structured and porous MoCx/C nanocomposites for highly efficient hydrogen evolution reaction. Carbon, 2020, 170, 558-566.	10.3	14
77	Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction. Applied Surface Science, 2018, 434, 243-250.	6.1	13
78	Self-supporting composited electrocatalysts of ultrafine Mo ₂ C on 3D-hierarchical porous carbon monoliths for efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 23265-23273.	10.3	13
79	Controlled nitridation of tantalum (oxy)nitride nanoparticles towards optimized metal-support interactions with gold nanocatalysts. RSC Advances, 2015, 5, 89282-89289.	3.6	12
80	Bromine anion mediated epitaxial growth of core–shell Pd@Ag towards efficient electrochemical CO ₂ reduction. Materials Chemistry Frontiers, 2021, 5, 4327-4333.	5.9	12
81	Single-layer CoFe hydroxides for efficient electrocatalytic oxygen evolution. Chemical Communications, 2021, 57, 7653-7656.	4.1	12
82	Converting surface-oxidized cobalt phosphides into Co ₂ (P ₂ O ₇)-CoP heterostructures for efficient electrocatalytic hydrogen evolution. Nanotechnology, 2019, 30, 394001.	2.6	10
83	Interlayer engineering of two-dimensional transition-metal disulfides for electrochemical and optical sensing applications. FlatChem, 2021, 27, 100242.	5.6	10
84	Co-tuning composition and channel-rich structure of Ag-Pd alloys toward sensitive electrochemical biosensing. Chemical Engineering Journal, 2021, 425, 131858.	12.7	8
85	<i>In situ</i> reconfiguration of plasma-engineered copper electrodes towards efficient electrocatalytic hydrogenation. Catalysis Science and Technology, 2022, 12, 4032-4039.	4.1	8
86	Design of N-graphene-NbOx hybrid nanosheets with sandwich-like structure and electrocatalytic performance towards oxygen reduction reaction. Electrochimica Acta, 2015, 158, 42-48.	5.2	7
87	N-doped molybdenum carbides embedded in porous carbon for efficient hydrogen evolution. Materials Today Energy, 2022, 26, 100992.	4.7	7
88	Intercalationâ€Driven Defectâ€Engineering of MoS ₂ for Catalytic Transfer Hydrogenation. Advanced Materials Interfaces, 2022, 9, .	3.7	7
89	Phase Engineering of CoMoO 4 Anode Materials toward Improved Cycle Life for Li + Storage â€. Chinese Journal of Chemistry, 2021, 39, 1121-1128.	4.9	6
90	Making Use of the δElectrons in K ₄ Mo ₂ (SO ₄) ₄ for Visible-Light-Induced Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2019, 11, 24006-24017.	8.0	4

#	Article	IF	CITATIONS
91	A 2H-MoS ₂ /carbon cloth composite for high-performance all-solid-state supercapacitors derived from a molybdenum dithiocarbamate complex. Dalton Transactions, 2021, 50, 11954-11964.	3.3	3
92	Electrospinning Heteroâ€Nanofibers of Fe ₃ Câ€Mo ₂ C/Nitrogenâ€Dopedâ€Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem, 2017, 10, 2546-2546.	6.8	2
93	Inside Cover: Controllable Synthesis of Organic-Inorganic Hybrid MoOx/Polyaniline Nanowires and Nanotubes (Chem. Eur. J. 5/2011). Chemistry - A European Journal, 2011, 17, 1370-1370.	3.3	0
94	Mesoporous and Skeletal Molybdenum Carbide for Hydrogen Evolution Reaction: Diatomite-type Structure and Formation Mechanism. ChemElectroChem, 2017, 4, 2129-2129.	3.4	0
95	Bimetallic Platinum-Tin Nanoparticles on Hydrogenated Molybdenum Oxide for the Selective Hydrogenation of Functionalized Nitroarenes. ChemCatChem, 2017, 9, 4158-4158.	3.7	0
96	Synthesis and transformation of one-dimensional organic-inorganic hybrid nanomaterials. Scientia Sinica Chimica, 2012, 42, 1598-1615.	0.4	0
97	Polymer-Derived Carbon/Inorganic Nanohybrids for Electrochemical Energy Storage and Conversion. Engineering Materials and Processes, 2017, , 419-480.	0.4	0