
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4441909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ifs and buts of non-thermal processing technologies for plant-based drinks' bioactive compounds. Food Science and Technology International, 2023, 29, 445-479.	1.1	2
2	Response to letter to the Editor from M. Peleg on: Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress. Trends in Food Science and Technology, 2022, 122, 332-332.	7.8	0
3	Application of High Hydrostatic Pressure in fresh purple smoothie: Microbial inactivation kinetic modelling and qualitative studies. Food Science and Technology International, 2022, , 108201322210956.	1.1	1
4	Different model hypotheses are needed to account for qualitative variability in the response of two strains of Salmonella spp. under dynamic conditions. Food Research International, 2022, 158, 111477.	2.9	3
5	Native Species Facing Climate Changes: Response of Calafate Berries to Low Temperature and UV Radiation. Foods, 2021, 10, 196.	1.9	13
6	Impact of Heating Rates on Alicyclobacillus acidoterrestris Heat Resistance under Non-Isothermal Treatments and Use of Mathematical Modelling to Optimize Orange Juice Processing. Foods, 2021, 10, 1496.	1.9	7
7	High Hydrostatic Pressure vs. Thermal Pasteurization: The Effect on the Bioactive Compound Profile of a Citrus Maqui Beverage. Foods, 2021, 10, 2416.	1.9	14
8	Dynamics of Microbial Inactivation and Acrylamide Production in High-Temperature Heat Treatments. Foods, 2021, 10, 2535.	1.9	2
9	Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress. Trends in Food Science and Technology, 2021, 118, 799-807.	7.8	13
10	Occurrence of <i>Salmonella typhimurium</i> resistance under sublethal/repeated exposure to cauliflower infusion and infection effects on <i>Caernohabditis elegans</i> host test organism. Food Science and Technology International, 2020, 26, 151-159.	1.1	1
11	Evaluation of Multicriteria Decision Analysis Algorithms in Food Safety: A Case Study on Emerging Zoonoses Prioritization. Risk Analysis, 2020, 40, 336-351.	1.5	15
12	Microbiological and process variability using biological indicators of inactivation (BIIs) based on Bacillus cereus spores of food and fish-based animal by-products to evaluate microwave heating in a pilot plant. Food Research International, 2020, 137, 109640.	2.9	2
13	BiopelÃculas y persistencia microbiana en la industria alimentaria. Arbor, 2020, 196, 538.	0.1	о
14	Training in tools to develop Quantitative Risk Assessment using Spanish readyâ€ŧoâ€eat food examples. EFSA Journal, 2020, 18, e181103.	0.9	1
15	The use of trade data to predict the source and spread of food safety outbreaks: An innovative mathematical modelling approach. Food Research International, 2019, 123, 712-721.	2.9	9
16	Mathematical modelling of the stress resistance induced in Listeria monocytogenes during dynamic, mild heat treatments. Food Microbiology, 2019, 84, 103238.	2.1	14
17	Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation. Food Research International, 2019, 119, 76-83.	2.9	27
18	Guidelines for the design of (optimal) isothermal inactivation experiments. Food Research International, 2019, 126, 108714.	2.9	16

#	Article	IF	CITATIONS
19	On the use of in-silico simulations to support experimental design: A case study in microbial inactivation of foods. PLoS ONE, 2019, 14, e0220683.	1.1	10
20	Response to the letter to Editor for "Bioinactivation FE: A free web application for modelling isothermal and dynamic microbial inactivation― Food Research International, 2019, 122, 692-694.	2.9	1
21	Optimal characterization of thermal microbial inactivation simulating non-isothermal processes. Food Research International, 2018, 107, 267-274.	2.9	11
22	Mathematical quantification of the induced stress resistance of microbial populations during non-isothermal stresses. International Journal of Food Microbiology, 2018, 266, 133-141.	2.1	23
23	Effect of storage conditions in the response of Listeria monocytogenes in a fresh purple vegetable smoothie compared with an acidified TSB medium. Food Microbiology, 2018, 72, 98-105.	2.1	12
24	Relevance of the Induced Stress Resistance When Identifying the Critical Microorganism for Microbial Risk Assessment. Frontiers in Microbiology, 2018, 9, 1663.	1.5	13
25	Bioinactivation FE: A free web application for modelling isothermal and dynamic microbial inactivation. Food Research International, 2018, 112, 353-360.	2.9	26
26	Bioinactivation: Software for modelling dynamic microbial inactivation. Food Research International, 2017, 93, 66-74.	2.9	46
27	Quality Changes and Shelf-Life Prediction of a Fresh Fruit and Vegetable Purple Smoothie. Food and Bioprocess Technology, 2017, 10, 1892-1904.	2.6	22
28	A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity. Sensors, 2017, 17, 1309.	2.1	8
29	High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli. Frontiers in Microbiology, 2016, 7, 1256.	1.5	23
30	One-step global parameter estimation of kinetic inactivation parameters for Bacillus sporothermodurans spores under static and dynamic thermal processes. Food Research International, 2016, 89, 614-619.	2.9	27
31	Antimicrobial activity of nisin, thymol, carvacrol and cymene against growth of <i>Candida lusitaniae</i> . Food Science and Technology International, 2015, 21, 72-79.	1.1	24
32	Assessment of the of acid shock effect on viability of Bacillus cereus and Bacillus weihenstephanensis using flow cytometry. Food Research International, 2014, 66, 306-312.	2.9	13
33	Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores. Food Microbiology, 2013, 34, 158-163.	2.1	33
34	Characterisation of the resistance and the growth variability of Listeria monocytogenes after high hydrostatic pressure treatments. Food Control, 2013, 29, 409-415.	2.8	35
35	Combined effect of nisin, carvacrol and a previous thermal treatment on the growth of <i>Salmonella</i> enteritidis and <i>Salmonella</i> senftenberg. Food Science and Technology International, 2013, 19, 357-364.	1.1	11
36	Development of a High-Resolution Melting–Based Approach for Efficient Differentiation Among <i>Bacillus cereus</i> Group Isolates. Foodborne Pathogens and Disease, 2012, 9, 777-785.	0.8	11

#	Article	IF	CITATIONS
37	Modelling the effects of temperature and osmotic shifts on the growth kinetics of Bacillus weihenstephanensis in broth and food products. International Journal of Food Microbiology, 2012, 158, 36-41.	2.1	11
38	Comparison of Probabilistic and Deterministic Predictions of Time to Growth ofListeria monocytogenesas Affected by pH and Temperature in Food. Foodborne Pathogens and Disease, 2011, 8, 141-148.	0.8	2
39	Combined effect of lysozyme and nisin at different incubation temperature and mild heat treatment on the probability of time to growth of Bacillus cereus. Food Microbiology, 2011, 28, 305-310.	2.1	16
40	Thermal inactivation of Alicyclobacillus acidoterrestris spores under conditions simulating industrial heating processes of tangerine vesicles and its use in time temperature integrators. European Food Research and Technology, 2011, 232, 821-827.	1.6	11
41	Prediction of time to growth of Listeria monocytogenes using Monte Carlo simulation or regression analysis, influenced by sublethal heat and recovery conditions. Food Microbiology, 2010, 27, 468-475.	2.1	15
42	Modeling the Lag Period and Exponential Growth of <i>Listeria monocytogenes</i> under Conditions of Fluctuating Temperature and Water Activity Values. Applied and Environmental Microbiology, 2010, 76, 2908-2915.	1.4	25
43	Characterization of Bacillus sporothermodurans IC4 spores; putative indicator microorganism for optimisation of thermal processes in food sterilisation. Food Research International, 2010, 43, 1895-1901.	2.9	27
44	Food Safety Engineering: An Emergent Perspective. Food Engineering Reviews, 2009, 1, 84-104.	3.1	51
45	Nonisothermal heat resistance determinations with the thermoresistometer Mastia. Journal of Applied Microbiology, 2009, 107, 506-513.	1.4	67
46	Determination of the effect of plant essential oils obtained by supercritical fluid extraction on the growth and viability of Listeria monocytogenes in broth and food systems using flow cytometry. LWT - Food Science and Technology, 2009, 42, 220-227.	2.5	31
47	EFFICACY OF PULSED ELECTRIC FIELDS FOR LISTERIA MONOCYTOGENES INACTIVATION AND CONTROL IN HORCHATA. Journal of Food Safety, 2006, 26, 137-149.	1.1	17
48	Use of Carvacrol and Cymene To Control Growth and Viability of Listeria monocytogenes Cells and Predictions of Survivors Using Frequency Distribution Functions. Journal of Food Protection, 2004, 67, 1408-1416.	0.8	39
49	Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiology, 2004, 21, 327-334.	2.1	77
50	Control of Lactobacillus plantarum and Escherichia coli by pulsed electric fields in MRS Broth, Nutrient Broth and orange–carrot juice. Food Microbiology, 2004, 21, 519-525.	2.1	48
51	Estimation of the non-isothermal inactivation patterns of Bacillus sporothermodurans IC4 spores in soups from their isothermal survival data. International Journal of Food Microbiology, 2004, 95, 205-218.	2.1	53
52	Combined effect of thymol and cymene to control the growth of Bacillus cereus vegetative cells. European Food Research and Technology, 2004, 218, 188-193.	1.6	35
53	Control of Enterobacter aerogenes by high-intensity, pulsed electric fields in horchata, a Spanish low-acid vegetable beverage. Food Microbiology, 2003, 20, 105-110.	2.1	37
54	Influence of pH and temperature on growth of Bacillus cereus in vegetable substrates. International Journal of Food Microbiology, 2003, 82, 71-79.	2.1	60

#	Article	IF	CITATIONS
55	Characterization of Bacillus cereus isolates from fresh vegetables and refrigerated minimally processed foods by biochemical and physiological tests. Food Microbiology, 2002, 19, 491-499.	2.1	92
56	Irradiation of spores of Bacillus cereus and Bacillus subtilis with electron beams. Innovative Food Science and Emerging Technologies, 2002, 3, 379-384.	2.7	39
57	A predictive model of growth from spores of non-proteolytic Clostridium botulinum in the presence of different CO2concentrations as influenced by chill temperature, pH and NaCl. Food Microbiology, 2001, 18, 453-461.	2.1	28
58	Effect of heat activation and inactivation conditions on germination and thermal resistance parameters of Bacillus cereus spores. International Journal of Food Microbiology, 2001, 63, 257-264.	2.1	50
59	Combined Effect of Nisin, Carvacrol and Thymol on the Viability of Bacillus Cereus Heat-Treated Vegetative Cells. Food Science and Technology International, 2001, 7, 487-492.	1.1	60
60	Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project. International Journal of Food Microbiology, 2000, 60, 117-135.	2.1	79
61	Growth of Bacillus cereus in natural and acidified carrot substrates over the temperature range 5–30°C. Food Microbiology, 2000, 17, 605-612.	2.1	53
62	Thermal Inactivation Kinetics of Bacillus stearothermophilus Spores Using a Linear Temperature Program. Journal of Food Protection, 1999, 62, 958-961.	0.8	8
63	Application of nonlinear regression analysis to the estimation of kinetic parameters for two enterotoxigenic strains ofBacillus cereus spores. Food Microbiology, 1999, 16, 607-613.	2.1	56
64	Risk analysis of the thermal sterilization process International Journal of Food Microbiology, 1999, 47, 51-57.	2.1	13
65	Effect of acidification and oil on the thermal resistance of Bacillus stearothermophilus spores heated in food substrate. International Journal of Food Microbiology, 1999, 52, 197-201.	2.1	17
66	Application of a frequency distribution model to describe the thermal inactivation of two strains of Bacillus cereus. Trends in Food Science and Technology, 1999, 10, 158-162.	7.8	105
67	A Predictive Model That Describes the Effect of Prolonged Heating at 70 to 90°C and Subsequent Incubation at Refrigeration Temperatures on Growth from Spores and Toxigenesis by Nonproteolytic <i>Clostridium botulinum</i> in the Presence of Lysozyme. Applied and Environmental Microbiology, 1999, 65, 3449-3457.	1.4	42
68	Predictive model to describe the combined effect of pH and NaCl on apparent heat resistance of Bacillus stearothermophilus. International Journal of Food Microbiology, 1998, 44, 21-30.	2.1	26
69	A predictive model to describe sensitization of heat-treated Bacillus stearothermophilus spores to NaCl. European Food Research and Technology, 1998, 206, 58-62.	0.6	5
70	Apparent thermal resistance of Bacillus stearothermophilus spores recovered under anaerobic conditions. European Food Research and Technology, 1998, 206, 63-67.	0.6	12
71	Modelling design of cuts for enzymatic peeling of mandarin and optimization of different parameters of the process. European Food Research and Technology, 1998, 207, 322-327.	0.6	15
72	The Effect of Modified Atmosphere Packaging on †Ready-to-Eat' Oranges. LWT - Food Science and Technology, 1998, 31, 322-328.	2.5	53

#	Article	IF	CITATIONS
73	Note. Kinetic parameters of Bacillus stearothermophilus spores under isothermal and non-isothermal heating conditions Nota. Parámetros cinéticos del tratamiento isotérmico y no isotérmico de esporas de Bacillus stearothermophilus. Food Science and Technology International, 1998, 4, 443-447.	1.1	14
74	Predictive Model Describing the Effect of Prolonged Heating at 70 to 80°C and Incubation at Refrigeration Temperatures on Growth and Toxigenesis by Nonproteolylic Clostridium botulinum. Journal of Food Protection, 1997, 60, 1064-1071.	0.8	44
75	Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 1997, 37, 37-45.	2.1	103
76	Thermal Resistance of Bacillus stearothermophilus Heated at High Temperatures in Different Substrates. Journal of Food Protection, 1997, 60, 144-147.	0.8	11
77	Mathematical model for the combined effect of temperature and pH on the thermal resistance of Bacillus stearothermophilus and Clostridium sporogenes spores. International Journal of Food Microbiology, 1996, 32, 225-233.	2.1	36
78	The effect of temperature and growth rate on the susceptibility of Listeria monocytogenes to environmental stress conditions. Letters in Applied Microbiology, 1996, 22, 121-124.	1.0	32
79	D Values of Bacillus stearothermophilus Spores as a Function of pH and Recovery Medium Acidulant. Journal of Food Protection, 1995, 58, 628-632.	0.8	21
80	Effect of lysozyme concentration, heating at 90°C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Letters in Applied Microbiology, 1995, 21, 50-54.	1.0	32
81	Thermal Resistance of Bacillus stearothermophilus Spores Heated in Acidified Mushroom Extract. Journal of Food Protection, 1994, 57, 37-41.	0.8	42
82	Thermal resistance characteristics of PA 3679 in the temperature range of 110–121°C as affected by pH, type of acidulant and substrate. International Journal of Food Microbiology, 1994, 22, 239-247.	2.1	39
83	Comparison of TDT and Arrhenius models for rate constant inactivation predictions of Bacillus stearothermophilus heated in mushroom-alginate substrate. Letters in Applied Microbiology, 1994, 19, 114-117.	1.0	7
84	Relation between thermal resistance and DPA content in variants of the same strains of Bacillus stearothermophilus spores. Letters in Applied Microbiology, 1994, 19, 118-120.	1.0	3
85	Influence of acidification and type of acidulant of the recovery medium on Bacillus	1.0	6