

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4441772/publications.pdf Version: 2024-02-01

DENCL

#	Article	IF	CITATIONS
1	Reticular chemistry approach to explore the catalytic CO2-epoxide cycloaddition reaction over tetrahedral coordination Lewis acidic sites in a Rutile-type Zinc-phosphonocarboxylate framework. Chemical Engineering Journal, 2022, 427, 131759.	12.7	20
2	Bottom-up construction of mesoporous supramolecular isomers based on a Pd3L6 triangular prism as templates for shape specific aggregation of polyiodide. Nano Research, 2022, 15, 2655-2660.	10.4	13
3	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	11.7	11
4	Understanding Diffusional Charge Transport within a Pyrene-Based Hydrogen-Bonded Organic Framework. Langmuir, 2022, 38, 1533-1539.	3.5	17
5	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Longâ€Lasting Selfâ€Cleaning Textiles. Angewandte Chemie - International Edition, 2022, 61, e202115956.	13.8	45
6	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Longâ€Lasting Selfâ€Cleaning Textiles. Angewandte Chemie, 2022, 134, .	2.0	3
7	Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Accounts of Chemical Research, 2022, 55, 579-591.	15.6	145
8	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	13.7	23
9	An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. , 2022, 4, 128-135.		34
10	Bioinspired Metalation of the Metalâ€Organic Framework MILâ€125â€NH ₂ for Photocatalytic NADH Regeneration and Gasâ€Liquidâ€Solid Threeâ€Phase Enzymatic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
11	Bioinspired Metalation of the Metalâ€Organic Framework MILâ€125â€NH ₂ for Photocatalytic NADH Regeneration and Gasâ€Liquidâ€Solid Threeâ€Phase Enzymatic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	3
12	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	13.7	174
13	Ultrafine Silver Nanoparticle Encapsulated Porous Molecular Traps for Discriminative Photoelectrochemical Detection of Mustard Gas Simulants by Synergistic Sizeâ€Exclusion and Siteâ€Specific Recognition. Advanced Materials, 2022, 34, .	21.0	37
14	Reticular exploration of uranium-based metal—organic frameworks with hexacarboxylate building units. Nano Research, 2021, 14, 376-380.	10.4	25
15	Post-synthetic anchoring Fe(III) into a fcu-type Zr-MOF for the catalyzed hydrolysis of 5-hydroxylmethoxyfurfural. Microporous and Mesoporous Materials, 2021, 328, 111449.	4.4	5
16	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	5.6	10
17	N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chemical Society Reviews, 2021, 50, 13559-13586.	38.1	42
18	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	10.3	33

#	Article	IF	CITATIONS
19	Effect of ionic liquid on sugar-aromatic separation selectivity by metal-organic framework NU-1000 in aqueous solution. Fuel Processing Technology, 2020, 197, 106189.	7.2	4
20	Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 1768-1773.	13.7	163
21	Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant. Chemistry of Materials, 2020, 32, 9299-9306.	6.7	38
22	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	38.1	367
23	Actinyl-Carboxylate Complexes [AnO ₂ (COOH) <i>_n</i> (H ₂ O) <i>_m</i>] ^{2â€"<i>n</i><!--<br-->(An = U, Np, Pu, and Am; <i>n</i> = 1â€"3; <i>m</i> = 0, 2, 4; 2<i>n</i> + <i>m</i> = 6): Electronic Structures, Interaction Features, and the Potential to Adsorbents toward Cs Ion. ACS Omega, 2020, 5,}	sup> 3.5	2
24	S1974-S1983. Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	13.7	95
25	Stabilization of Photocatalytically Active Uranyl Species in a Uranyl–Organic Framework for Heterogeneous Alkane Fluorination Driven by Visible Light. Inorganic Chemistry, 2020, 59, 16795-16798.	4.0	26
26	Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification. Cell Reports Physical Science, 2020, 1, 100024.	5.6	107
27	Organic Counteranion Co-assembly Strategy for the Formation of Î ³ -Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	13.7	26
28	Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. Journal of the American Chemical Society, 2020, 142, 6180-6187.	13.7	50
29	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	6.8	36
30	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Interfaces, 2019, 11, 32090-32096.	8.0	44
31	A Hierarchical Nanoporous Diamondoid Superstructure. CheM, 2019, 5, 2353-2364.	11.7	23
32	In Situ Formation of Unprecedented Neptunium-Oxide Wheel Clusters Stabilized in a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 11842-11846.	13.7	36
33	A Highly Porous Metal-Organic Framework System to Deliver Payloads for Gene Knockdown. CheM, 2019, 5, 2926-2941.	11.7	66
34	Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal–Organic Framework Coating on Textile Fiber. Journal of the American Chemical Society, 2019, 141, 15626-15633.	13.7	148
35	DNA-Functionalized Metal–Organic Framework Nanoparticles for Intracellular Delivery of Proteins. Journal of the American Chemical Society, 2019, 141, 2215-2219.	13.7	231
36	Multifunctional porous hydrogen-bonded organic framework materials. Chemical Society Reviews, 2019, 48, 1362-1389.	38.1	751

#	Article	IF	CITATIONS
37	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	7.4	129
38	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	6.7	80
39	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112
40	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2. Angewandte Chemie, 2019, 131, 7764-7768.	2.0	31
41	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 7682-7686.	13.8	103
42	Synthetic Control of Thorium Polyoxo-Clusters in Metal–Organic Frameworks toward New Thorium-Based Materials. ACS Applied Nano Materials, 2019, 2, 2260-2265.	5.0	34
43	Toward Design Rules of Metal–Organic Frameworks for Adsorption Cooling: Effect of Topology on the Ethanol Working Capacity. Chemistry of Materials, 2019, 31, 2702-2706.	6.7	27
44	Stabilization of an Unprecedented Hexanuclear Secondary Building Unit in a Thorium-Based Metal–Organic Framework. Inorganic Chemistry, 2019, 58, 3586-3590.	4.0	38
45	Reticular Access to Highly Porous acs -MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. Journal of the American Chemical Society, 2019, 141, 2900-2905.	13.7	150
46	A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS Applied Bio Materials, 2019, 2, 1197-1203.	4.6	68
47	Organic Compounds of Actinyls: Systematic Computational Assessment of Structural and Topological Properties in [AnO ₂ (C ₂ O ₄) _{<i>n</i>}] ^{(2<i>n</i>â^²2)–} (An) Tj ⁴ E ^Q Qq1	1 <mark>0.</mark> 784314
48	Successful Decontamination of ⁹⁹ TcO ₄ ^{â^'} in Groundwater at Legacy Nuclear Sites by a Cationic Metalâ€Organic Framework with Hydrophobic Pockets. Angewandte Chemie - International Edition, 2019, 58, 4968-4972.	13.8	177
49	Successful Decontamination of ⁹⁹ TcO ₄ ^{â^'} in Groundwater at Legacy Nuclear Sites by a Cationic Metalâ€Organic Framework with Hydrophobic Pockets. Angewandte Chemie, 2019, 131, 5022-5026.	2.0	37
50	Guest-Dependent Single-Crystal-to-Single-Crystal Phase Transitions in a Two-Dimensional Uranyl-Based Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 506-512.	3.0	29
51	Versatile and Switchable Responsive Properties of a Lanthanideâ€Viologen Metal–Organic Framework. Small, 2019, 15, e1803468.	10.0	88
52	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1664-1669.	13.8	93
53	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 2019, 131, 1678-1683.	2.0	29
54	Acid-Resistant Mesoporous Metal–Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. Journal of the American Chemical Society, 2018, 140, 5678-5681.	13.7	334

#	Article	IF	CITATIONS
55	Copper Metal–Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes. ACS Nano, 2018, 12, 1023-1032.	14.6	282
56	Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework. CrystEngComm, 2018, 20, 5913-5918.	2.6	136
57	Toward a Charged Homo[2]catenane Employing Diazaperopyrenium Homophilic Recognition. Journal of the American Chemical Society, 2018, 140, 6540-6544.	13.7	15
58	Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. CheM, 2018, 4, 1022-1034.	11.7	281
59	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	6.7	80
60	Bottom-Up Design and Generation of Complex Structures: A New Twist in Reticular Chemistry. Crystal Growth and Design, 2018, 18, 449-455.	3.0	14
61	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	4.0	80
62	99TcO4â [~] remediation by a cationic polymeric network. Nature Communications, 2018, 9, 3007.	12.8	234
63	Catalytic chemoselective functionalization of methane in a metalâ~'organic framework. Nature Catalysis, 2018, 1, 356-362.	34.4	153
64	Epitaxial Growth of γ-Cyclodextrin-Containing Metal–Organic Frameworks Based on a Host–Guest Strategy. Journal of the American Chemical Society, 2018, 140, 11402-11407.	13.7	44
65	Intramolecular Energy and Electron Transfer within a Diazaperopyrenium-Based Cyclophane. Journal of the American Chemical Society, 2017, 139, 4107-4116.	13.7	42
66	Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 2017, 19, 4082-4091.	2.6	235
67	Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science, 2017, 356, 624-627.	12.6	286
68	Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 33413-33418.	8.0	183
69	Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release. Journal of the American Chemical Society, 2017, 139, 7522-7532.	13.7	269
70	Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-type Metal–Organic Framework. Chemistry of Materials, 2017, 29, 5174-5181.	6.7	143
71	Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. Industrial & Engineering Chemistry Research, 2017, 56, 7141-7148.	3.7	95
72	Insights into Supramolecular Sites Responsible for Complete Separation of Biomass-Derived Phenolics and Glucose in Metal–Organic Framework NU-1000. Langmuir, 2017, 33, 4129-4137.	3.5	14

#	Article	IF	CITATIONS
73	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	11.2	288
74	Identifying the Recognition Site for Selective Trapping of ⁹⁹ TcO ₄ [–] in a Hydrolytically Stable and Radiation Resistant Cationic Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 14873-14876.	13.7	386
75	Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation. Chemistry of Materials, 2017, 29, 6315-6328.	6.7	65
76	Adding to the Arsenal of Zirconium-Based Metal-Organic Frameworks:theTopology as a Platform for Solvent-Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4266-4266.	2.0	1
77	Unprecedented selectivity in molecular recognition of carbohydrates by a metal–organic framework. Chemical Communications, 2016, 52, 7094-7097.	4.1	49
78	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	14.6	202
79	MOFs and their grafted analogues: regioselective epoxide ring-opening with Zr ₆ nodes. Catalysis Science and Technology, 2016, 6, 6480-6484.	4.1	27
80	Complete furanics–sugar separations with metal–organic framework NU-1000. Chemical Communications, 2016, 52, 11791-11794.	4.1	34
81	Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie - International Edition, 2016, 55, 10358-10362.	13.8	175
82	Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie, 2016, 128, 10514-10518.	2.0	44
83	Adding to the Arsenal of Zirconiumâ€Based Metal–Organic Frameworks: <i>the</i> Topology as a Platform for Solventâ€Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4349-4352.	2.0	59
84	Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. CheM, 2016, 1, 154-169.	11.7	286
85	In silico discovery of metal-organic frameworks for precombustion CO ₂ capture using a genetic algorithm. Science Advances, 2016, 2, e1600909.	10.3	231
86	A Redox-Active Bistable Molecular Switch Mounted inside a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 14242-14245.	13.7	114
87	Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability. Journal of the American Chemical Society, 2016, 138, 8052-8055.	13.7	302
88	Melt-Quenched Glasses of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 3484-3492.	13.7	252
89	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	48.7	1,490
90	A Rodâ€Packing Microporous Hydrogenâ€Bonded Organic Framework for Highly Selective Separation of C ₂ H ₂ /CO ₂ at Room Temperature. Angewandte Chemie - International Edition, 2015, 54, 574-577.	13.8	289

#	Article	IF	CITATIONS
91	Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chemical Communications, 2015, 51, 10925-10928.	4.1	194
92	A Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Gas Separation. Crystal Growth and Design, 2015, 15, 2000-2004.	3.0	115
93	Solvent Dependent Structures of Melamine: Porous or Nonporous?. Crystal Growth and Design, 2015, 15, 1871-1875.	3.0	36
94	A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chemical Letters, 2015, 26, 6-10.	9.0	49
95	A metal–organic framework as a highly efficient and reusable catalyst for the solvent-free 1,3-dipolar cycloaddition of organic azides to alkynes. Inorganic Chemistry Frontiers, 2015, 2, 42-46.	6.0	33
96	A Homochiral Microporous Hydrogen-Bonded Organic Framework for Highly Enantioselective Separation of Secondary Alcohols. Journal of the American Chemical Society, 2014, 136, 547-549.	13.7	292
97	A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C ₂ H ₄ /C ₂ H ₆ . Chemical Communications, 2014, 50, 13081-13084.	4.1	147
98	Solvent Dependent Structures of Hydrogen-Bonded Organic Frameworks of 2,6-Diaminopurine. Crystal Growth and Design, 2014, 14, 3634-3638.	3.0	26
99	Enantioselective ring-opening of meso-epoxides by aromatic amines catalyzed by a homochiral metal–organic framework. Chemical Communications, 2013, 49, 9836.	4.1	60
100	Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 2012, 53, 4870-4872.	1.4	48
101	Three-Dimensional Pillar-Layered Copper(II) Metalâ [^] Organic Framework with Immobilized Functional OH Groups on Pore Surfaces for Highly Selective CO ₂ /CH ₄ and C ₂ H ₂ /CH ₄ Gas Sorption at Room Temperature. Inorganic Chemistry, 2011, 50, 3442-3446.	4.0	115
102	Hydrogen-bonding 2D metal–organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction. Tetrahedron Letters, 2011, 52, 6220-6222.	1.4	68
103	Significantly Enhanced CO ₂ /CH ₄ Separation Selectivity within a 3D Prototype Metal–Organic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. European Journal of Inorganic Chemistry, 2011, 2011, 2227-2231.	2.0	56
104	A Microporous Metal <i>–</i> Organic Framework with Immobilized –OH Functional Groups within the Pore Surfaces for Selective Gas Sorption. European Journal of Inorganic Chemistry, 2010, 2010, 3745-3749.	2.0	97
105	Supramolecular Isomerism of Metalâ~'Organic Frameworks Derived from a Bicarboxylate Linker with Two Distinct Binding Motifs. Crystal Growth and Design, 2009, 9, 1505-1510.	3.0	32
106	Unprecedented trinodal four-connected FRL MOF based on mixed ligands. Dalton Transactions, 2009, , 4847.	3.3	14