
MarÃ-a José GonzÃ;lez FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4441722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. European Food Research and Technology, 2016, 242, 1471-1477.	3.3	78
2	Hemp (<i>Cannabis sativa</i> L.) Varieties: Fatty Acid Profiles and Upgrading of Î³â€Łinolenic Acid–Containing Hemp Seed Oils. European Journal of Lipid Science and Technology, 2020, 122, 1900445.	1.5	27
3	Phytochemical Composition and Antitumor Activities of New Salad Greens: Rucola (Diplotaxis) Tj ETQq1 1 0.7843	14 rgBT 3.2	Overlock 10
4	α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicology Research, 2020, 9, 474-483.	2.1	22
5	Fatty acid profiles and sn -2 fatty acid distribution of Î ³ -linolenic acid-rich Borago species. Journal of Food Composition and Analysis, 2018, 66, 74-80.	3.9	21
6	Sardinian Boraginaceae are new potential sources of gamma-linolenic acid. Food Chemistry, 2017, 218, 435-439.	8.2	20
7	Borage oil: Tocopherols, sterols and squalene in farmed and endemic-wild Borago species. Journal of Food Composition and Analysis, 2019, 83, 103299.	3.9	20
8	Purification process for MUFA- and PUFA-based monoacylglycerols from edible oils. Biochimie, 2017, 139, 107-114.	2.6	19
9	Proteomics Study Reveals That Docosahexaenoic and Arachidonic Acids Exert Different <i>In Vitro</i> Anticancer Activities in Colorectal Cancer Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 6003-6012.	5.2	19
10	Various Acylglycerols from Common Oils Exert Different Antitumor Activities on Colorectal Cancer Cells. Nutrition and Cancer, 2016, 68, 518-529.	2.0	17
11	Ribes taxa: A promising source of Î ³ -linolenic acid-rich functional oils. Food Chemistry, 2019, 301, 125309.	8.2	16
12	Highly concentrated very long-chain PUFA obtainment by Urea complexation methodology. Environmental Technology and Innovation, 2020, 18, 100736.	6.1	16
13	SWATH Differential Abundance Proteomics and Cellular Assays Show In Vitro Anticancer Activity of Arachidonic Acid- and Docosahexaenoic Acid-Based Monoacylglycerols in HT-29 Colorectal Cancer Cells. Nutrients, 2019, 11, 2984.	4.1	11
14	Green argan oil extraction from roasted and unroasted seeds by using various polarity solvents allowed by the EU legislation. Journal of Cleaner Production, 2020, 276, 123081.	9.3	11
15	Phenolic composition and in vitro antiproliferative activity of Borago spp. seed extracts on HT-29 cancer cells. Food Bioscience, 2021, 42, 101043.	4.4	8
16	Mertensia (Boraginaceae) seeds are new sources of Î ³ -linolenic acid and minor functional compounds. Food Chemistry, 2021, 350, 128635.	8.2	6
17	A whole-food approach to the in vitro assessment of the antitumor activity of gazpacho. Food Research International, 2019, 121, 441-452.	6.2	5

MarÃa José GonzÃilez

Seasonal changes of proximate composition and fatty acids of farmed dusky grouper (<i>Epinephelus) Tj ETQq0 0 0.2gBT /Ovgrlock 10 T

#	Article	IF	CITATIONS
19	γâ€Linolenic and Stearidonic Acids from Boraginaceae of Diverse Mediterranean Origin. Chemistry and Biodiversity, 2020, 17, e2000627.	2.1	3