Sebastian Muoz Guerra

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4441664/sebastian-munoz-guerra-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,531 211 33 52 h-index g-index citations papers 4,863 215 4.2 5.57 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
211	Copolymacrolactones Grafted with l-Glutamic Acid: Synthesis, Structure, and Nanocarrier Properties. <i>Polymers</i> , 2020 , 12,	4.5	3
210	Ring opening polymerization of macrocyclic oligoesters derived from renewable sources. <i>Polymer Chemistry</i> , 2020 , 11, 4850-4860	4.9	11
209	ROP and crystallization behaviour of partially renewable triblock aromatic-aliphatic copolymers derived from L-lactide. <i>European Polymer Journal</i> , 2020 , 122, 109321	5.2	2
208	[lickable[bacterial poly(頃lutamic acid). <i>Polymer Chemistry</i> , 2020 , 11, 5582-5589	4.9	13
207	Poly (⊞odecyl EGlutamate) (PAAG-12) and Polylactic Acid Films Charged with ⊞ocopherol and Their Antioxidant Capacity in Food Models. <i>Antioxidants</i> , 2019 , 8,	7.1	5
206	Synthesis and properties of diblock copolymers of Epentadecalactone and Eamino acids. <i>European Polymer Journal</i> , 2019 , 116, 169-179	5.2	6
205	Synthesis of AromaticAliphatic Polyesters by Enzymatic Ring Opening Polymerization of Cyclic Oligoesters and their Cyclodepolymerization for a Circular Economy. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 321-325	4.3	10
204	Block and Graft Copolymers Made of 16-Membered Macrolactones and l-Alanine: A Comparative Study. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1900214	2.6	2
203	Controlling the Isothermal Crystallization of Isodimorphic PBSPCL Random Copolymers by Varying Composition and Supercooling. <i>Polymers</i> , 2019 , 12,	4.5	9
202	Isomannide-Containing Poly(butylene 2,5-furandicarboxylate) Copolyesters via Ring Opening Polymerization. <i>Macromolecules</i> , 2018 , 51, 3340-3350	5.5	29
201	Hydroxyl-functionalized amphiphilic triblock copolyesters made of tartaric and lactic acids: Synthesis and nanoparticle formation. <i>Reactive and Functional Polymers</i> , 2018 , 126, 52-62	4.6	6
200	Comblike Ionic Complexes of Hyaluronic Acid and Alkanoylcholine Surfactants as a Platform for Drug Delivery Systems. <i>Biomacromolecules</i> , 2018 , 19, 3669-3681	6.9	2
199	Amphiphilic ionic complexes of hyaluronic acid with organophosphonium compounds and their antimicrobial activity. <i>International Journal of Biological Macromolecules</i> , 2018 , 118, 2021-2031	7.9	3
198	Partially Renewable Poly(butylene 2,5-furandicarboxylateisophthalate) Copolyesters Obtained by ROP. <i>Polymers</i> , 2018 , 10,	4.5	8
197	Nanocomposites of Microbial Polyglutamic Acid and Nanoclays Compatibilized by Organophosphonium Surfactants. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1800083	2.6	O
196	Blocky poly(e-caprolactone-co-butylene 2,5-furandicarboxylate) copolyesters via enzymatic ring opening polymerization. <i>Journal of Polymer Science Part A</i> , 2018 , 56, 290-299	2.5	32
195	Tuning the Thermal Properties and Morphology of Isodimorphic Poly[(butylene succinate)-ran-(Eaprolactone)] Copolyesters by Changing Composition, Molecular Weight, and Thermal History. <i>Macromolecules</i> , 2018 , 51, 9589-9601	5.5	19

(2015-2018)

194	Ionic coupling of hyaluronic acid with ethyl N-lauroyl l-arginate (LAE): Structure, properties and biocide activity of complexes. <i>Carbohydrate Polymers</i> , 2018 , 197, 109-116	10.3	6
193	Crystalline structure and thermotropic behavior of alkyltrimethylphosphonium amphiphiles. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 4370-4382	3.6	7
192	Poly(butylene succinate-ran-Etaprolactone) copolyesters: Enzymatic synthesis and crystalline isodimorphic character. <i>European Polymer Journal</i> , 2017 , 95, 795-808	5.2	28
191	Fully bio-based aromatic liphatic copolyesters: poly (butylene furandicarboxylate-co-succinate)s obtained by ring opening polymerization. <i>Polymer Chemistry</i> , 2017 , 8, 748-760	4.9	44
190	Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide. <i>Designed Monomers and Polymers</i> , 2017 , 20, 157-166	3.1	15
189	Ionic complexes of poly(頃lutamic acid) with alkyltrimethylphosphonium surfactants. <i>Polymer</i> , 2017 , 116, 43-54	3.9	5
188	Antibacterial Films Made of Ionic Complexes of Poly(Eglutamic acid) and Ethyl Lauroyl Arginate. <i>Polymers</i> , 2017 , 10,	4.5	6
187	Modulating the T of Poly(alkylene succinate)s by Inserting Bio-Based Aromatic Units via Ring-Opening Copolymerization. <i>Polymers</i> , 2017 , 9,	4.5	6
186	Triblock copolyesters derived from lactic acid and glucose: Synthesis, nanoparticle formation and simulation. <i>European Polymer Journal</i> , 2017 , 92, 1-12	5.2	8
185	Modification of microbial polymers by thiol-ene click reaction: Nanoparticle formation and drug encapsulation. <i>Reactive and Functional Polymers</i> , 2016 , 106, 143-152	4.6	1
184	Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced T. <i>Biomacromolecules</i> , 2016 , 17, 3404-3416	6.9	23
183	Sustainable Aromatic Copolyesters via Ring Opening Polymerization: Poly(butylene 2,5-furandicarboxylate-co-terephthalate)s. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4965-49	7 ⁸ .3	46
182	Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. <i>Polymer</i> , 2016 , 87, 148-158	3.9	91
181	Cationic poly(butylene succinate) copolyesters. <i>European Polymer Journal</i> , 2016 , 75, 329-342	5.2	15
180	Poly(butylene succinate) ionomers and their use as compatibilizers in nanocomposites. <i>Polymer Composites</i> , 2016 , 37, 2603-2610	3	8
179	Poly(butylene succinate) Ionomers with Enhanced Hydrodegradability. <i>Polymers</i> , 2015 , 7, 1232-1247	4.5	18
178	Bio-based PBS copolyesters derived from a bicyclic D-glucitol. <i>RSC Advances</i> , 2015 , 5, 46395-46404	3.7	22
177	Copolyesters made from 1,4-butanediol, sebacic acid, and D-glucose by melt and enzymatic polycondensation. <i>Biomacromolecules</i> , 2015 , 16, 868-79	6.9	48

176	Carbohydrate-based PBT copolyesters from a cyclic diol derived from naturally occurring tartaric acid: a comparative study regarding melt polycondensation and solid-state modification. <i>Green Chemistry</i> , 2014 , 16, 1789-1798	10	26
175	Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers. <i>Green Chemistry</i> , 2014 , 16, 1716-1739	10	91
174	Bio-based PBT copolyesters derived from D-glucose: influence of composition on properties. <i>Polymer Chemistry</i> , 2014 , 5, 3190-3202	4.9	48
173	Thermal behavior of long-chain alkanoylcholine soaps. <i>RSC Advances</i> , 2014 , 4, 10738-10750	3.7	5
172	Nanoparticles of esterified polymalic acid for controlled anticancer drug release. <i>Macromolecular Bioscience</i> , 2014 , 14, 1325-36	5.5	7
171	Poly(IL-malic acid)/Doxorubicin ionic complex: A pH-dependent delivery system. <i>Reactive and Functional Polymers</i> , 2014 , 81, 45-53	4.6	18
170	Biodegradable Copolyesters of Poly(hexamethylene terephthalate) Containing Bicyclic 2,4:3,5-Di-O-methylene-d-Glucarate Units. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 2048-2059	2.6	7
169	Chemical Structure and Microstructure of Poly(alkylene terephthalate)s, their Copolyesters, and their Blends as Studied by NMR. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 2138-2160	2.6	29
168	Modification of properties of poly(butylene succinate) by copolymerization with tartaric acid-based monomers. <i>European Polymer Journal</i> , 2014 , 61, 263-273	5.2	25
167	Partially renewable copolyesters prepared from acetalized d-glucitol by solid-state modification of poly(butylene terephthalate). <i>Journal of Polymer Science Part A</i> , 2014 , 52, 164-177	2.5	15
166	Bio-based poly(ethylene terephthalate) copolyesters made from cyclic monomers derived from tartaric acid. <i>Polymer</i> , 2014 , 55, 2294-2304	3.9	26
165	Complexes of polyglutamic acid and long-chain alkanoylcholines: nanoparticle formation and drug release. <i>International Journal of Biological Macromolecules</i> , 2014 , 66, 346-53	7.9	6
164	The structure of poly(Eglutamic acid)/nanoclay hybrids compatibilized by alkylammonium surfactants. <i>European Polymer Journal</i> , 2013 , 49, 2596-2609	5.2	3
163	Bio-based poly(hexamethylene terephthalate) copolyesters containing cyclic acetalized tartrate units. <i>Polymer</i> , 2013 , 54, 1573-1582	3.9	18
162	Sugar-based aromatic copolyesters: a comparative study regarding isosorbide and diacetalized alditols as sustainable comonomers. <i>Green Chemistry</i> , 2013 , 15, 144-151	10	63
161	Comblike Ionic Complexes of Poly(Eglutamic acid) and Alkanoylcholines Derived from Fatty Acids. <i>Macromolecules</i> , 2013 , 46, 1607-1617	5.5	11
160	Comb-like ionic complexes of hyaluronic acid with alkyltrimethylammonium surfactants. <i>Carbohydrate Polymers</i> , 2013 , 92, 691-6	10.3	11
159	High T(g) bio-based aliphatic polyesters from bicyclic D-mannitol. <i>Biomacromolecules</i> , 2013 , 14, 781-93	6.9	92

158	D-Glucose-derived PET copolyesters with enhanced Tg. <i>Polymer Chemistry</i> , 2013 , 4, 3524	4.9	46
157	Chemical Modification of Microbial Poly(Eglutamic acid). <i>Journal of Renewable Materials</i> , 2013 , 1, 42-60	2.4	16
156	Solid-State Modification of PBT with Cyclic Acetalized Galactitol and d-Mannitol: Influence of Composition and Chemical Microstructure on Thermal Properties. <i>Macromolecules</i> , 2013 , 46, 4335-4345	; 5·5	44
155	PET copolyesters made from a D-mannitol-derived bicyclic diol. <i>Polymer Chemistry</i> , 2013 , 4, 282-289	4.9	56
154	Sulfonated poly(hexamethylene terephthalate) copolyesters: Enhanced thermal and mechanical properties. <i>Journal of Applied Polymer Science</i> , 2013 , 129, 3527-3535	2.9	8
153	Carbohydrate-based polyurethanes: A comparative study of polymers made from isosorbide and 1,4-butanediol. <i>Journal of Applied Polymer Science</i> , 2012 , 123, 986-994	2.9	41
152	Bio-based aromatic copolyesters made from 1,6-hexanediol and bicyclic diacetalized D-glucitol. <i>Polymer Chemistry</i> , 2012 , 3, 2092	4.9	33
151	Nanocomposites of comb-like ionic complexes of bacterial poly(glutamic acid) with nanoclays. <i>European Polymer Journal</i> , 2012 , 48, 1838-1845	5.2	5
150	Study of molecular structure and vibrational spectra of poly ([Al-malic acid) [PMLA] using DFT approach. <i>Polymer</i> , 2012 , 53, 2681-2690	3.9	6
149	Bio-based poly(butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: Influence of composition on properties. <i>Polymer</i> , 2012 , 53, 3432-3445	3.9	47
148	Poly(ethylene terephthalate) terpolyesters containing 1,4-cyclohexanedimethanol and isosorbide. High Performance Polymers, 2012 , 24, 24-30	1.6	15
147	Bio-Based Aromatic Polyesters from a Novel Bicyclic Diol Derived from d-Mannitol. <i>Macromolecules</i> , 2012 , 45, 8257-8266	5.5	92
146	Poly(Bultamic acid) esters with reactive functional groups suitable for orthogonal conjugation strategies. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 4790-4799	2.5	36
145	Carbohydrate-based copolyesters made from bicyclic acetalized galactaric acid. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 1591-1604	2.5	44
144	Biodegradable aromatic copolyesters made from bicyclic acetalized galactaric acid. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 3393-3406	2.5	29
143	Modification of Microbial Polymalic Acid With Hydrophobic Amino Acids for Drug-Releasing Nanoparticles. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1623-1631	2.6	16
142	Carbohydrate-based polyamides and polyesters: an overview illustrated with two selected examples. <i>High Performance Polymers</i> , 2012 , 24, 9-23	1.6	29
141	Polyterephthalates made from Ethylene glycol, 1,4-cyclohexanedimethanol, and isosorbide. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 2252-2260	2.5	53

140	Poly(methyl malate) nanoparticles: formation, degradation, and encapsulation of anticancer drugs. <i>Macromolecular Bioscience</i> , 2011 , 11, 1370-7	5.5	18
139	Carbohydrate-based polyesters made from bicyclic acetalized galactaric acid. <i>Biomacromolecules</i> , 2011 , 12, 2642-52	6.9	92
138	Comb-like ionic complexes of pectinic and alginic acids with alkyltrimethylammonium surfactants. <i>Carbohydrate Polymers</i> , 2011 , 86, 484-490	10.3	8
137	Thermal degradation and theoretical interpretation of vibrational spectra of poly ([I-malic acid). <i>Polymer</i> , 2011 , 52, 3118-3126	3.9	6
136	Ionic Complexes of Polyacids and Cationic Surfactants. <i>Macromolecular Symposia</i> , 2010 , 296, 265-271	0.8	3
135	Nanoconjugate Platforms Development Based in Poly(L -Malic Acid) Methyl Esters for Tumor Drug Delivery. <i>Journal of Nanomaterials</i> , 2010 , 2010,	3.2	17
134	Hydrolyzable aromatic copolyesters of p-dioxanone. <i>Biomacromolecules</i> , 2010 , 11, 2512-20	6.9	18
133	Sequence Analysis of Polyether-Based Thermoplastic Polyurethane Elastomers by 13C NMR. <i>Macromolecules</i> , 2010 , 43, 3990-3993	5.5	13
132	Poly(ethylene terephthalate-co-isophthalate) copolyesters obtained from ethylene terephthalate and isophthalate oligomers. <i>Journal of Applied Polymer Science</i> , 2010 , 115, 1823-1830	2.9	10
131	Poly(hexamethylene terephthalate) Byered silicate nanocomposites. European Polymer Journal, 2010 , 46, 156-164	5.2	14
130	Poly(hexamethylene terephthalate-co-caprolactone) copolymers: Influence of cycle size on ring-opening polymerization. <i>European Polymer Journal</i> , 2010 , 46, 792-803	5.2	11
129	Synthesis and properties of poly(hexamethylene terephthalate)/multiwall carbon nanotubes nanocomposites. <i>Composites Science and Technology</i> , 2010 , 70, 789-796	8.6	21
128	Nanoparticles made of microbial poly(gamma-glutamate)s for encapsulation and delivery of drugs and proteins. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2009 , 20, 1065-79	3.5	25
127	Hydroxylated Linear Polyurethanes Derived from Sugar Alditols. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 486-494	2.6	26
126	Carbohydrate-based poly(ester-urethane)s: A comparative study regarding cyclic alditols extenders and polymerization procedures. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 3723-3736	2.9	36
125	Butylene copolyesters based on aldaric and terephthalic acids. Synthesis and characterization. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 1168-1177	2.5	13
124	Linear polyurethanes made from naturally occurring tartaric acid. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 2391-2407	2.5	13
123	Poly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate) copolyesters obtained by ring opening polymerization. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5954-5966	2.5	21

(2006-2009)

122	Crystalline structure and crystallization of stereoisomeric polyamides derived from arabinaric acid. <i>Polymer</i> , 2009 , 50, 2048-2057	3.9	18
121	Poly(hexamethylene terephthalate-co-caprolactone) Copolyesters Obtained by Ring-Opening Polymerization. <i>Macromolecules</i> , 2008 , 41, 4136-4146	5.5	33
120	Spectroscopic Evidence for Stereocomplex Formation by Enantiomeric Polyamides Derived from Tartaric Acid. <i>Macromolecules</i> , 2008 , 41, 3734-3738	5.5	16
119	Ionic Complexes of Biotechnological Polyacids with Cationic Surfactants. <i>Macromolecular Symposia</i> , 2008 , 273, 85-94	0.8	2
118	Polyesters analogous to PET and PBT based on O-benzyl ethers of xylitol and L-arabinitol. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 5167-5179	2.5	18
117	Linear polyurethanes made from threitol: Acetalized and hydroxylated polymers. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 7996-8012	2.5	24
116	Rheological Features and Flow-Induced Crystallization of Branched Poly[ethylene-co-(1,4-cyclohexanedimethylene terephthalate)] Copolyesters. <i>Macromolecular Materials and Engineering</i> , 2008 , 293, 836-846	3.9	7
115	Synthesis, degradability, and drug releasing properties of methyl esters of fungal poly(beta,L-malic acid). <i>Macromolecular Bioscience</i> , 2008 , 8, 540-50	5.5	25
114	Biodegradable nanoparticles of partially methylated fungal poly(beta-L-malic acid) as a novel protein delivery carrier. <i>Macromolecular Bioscience</i> , 2008 , 8, 551-9	5.5	24
113	lonic complexes of biosynthetic poly(malic acid) and poly(glutamic acid) as prospective drug-delivery systems. <i>Macromolecular Bioscience</i> , 2007 , 7, 897-906	5.5	14
112	Styrene/(substituted styrene) copolymerization by Ph2ZnhetalloceneMAO systems: Synthesis and characterization of poly(styrene-co-p-hydroxystyrene) copolymers. <i>Polymer</i> , 2007 , 48, 4646-4652	3.9	6
111	Linear polyurethanes derived from alditols and diisocyanates. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 4109-4117	2.5	29
110	Crystallization and crystal structure of poly(ester amide)s derived from L-tartaric acid. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 116-125	2.6	2
109	Thermal decomposition of microbial poly(Eglutamic acid) and poly(Eglutamate)s. <i>Polymer Degradation and Stability</i> , 2007 , 92, 1916-1924	4.7	26
108	Mechanical relaxations of poly(IL-aspartate)s. Journal of Applied Polymer Science, 2006, 99, 994-1003	2.9	
107	Polycondensation of L-Lysine Diketopiperazine with Tartaric Acid - Evidence on the Formation of Cyclic Oligomers. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 615-620	2.6	8
106	Stereocomplex Formation from Enantiomeric Polyamides Derived from Tartaric Acid. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1955-1961	4.8	16
105	Nanostructurated complexes of poly(beta,L-malate) and cationic surfactants: synthesis, characterization and structural aspects. <i>Biomacromolecules</i> , 2006 , 7, 161-70	6.9	17

104	Poly(butylene terephthalate) Copolyesters Derived from l-Arabinitol and Xylitol. <i>Macromolecules</i> , 2006 , 39, 1410-1416	5.5	32
103	Thermal decomposition of fungal poly(beta,L-malic acid) and Poly(beta,L-malate)s. <i>Biomacromolecules</i> , 2006 , 7, 3283-90	6.9	19
102	Comblike Complexes of Poly(aspartic acid) and Alkyltrimethylamonium Cationic Surfactants. <i>Macromolecular Symposia</i> , 2006 , 245-246, 266-275	0.8	2
101	StyreneBubstituted-styrene copolymerization using diphenylzinchetallocenehethylaluminoxane systems. <i>Polymer International</i> , 2006 , 55, 910-915	3.3	10
100	Enzymatic and microbial biodegradability of poly(ethylene terephthalate) copolymers containing nitrated units. <i>Polymer Degradation and Stability</i> , 2006 , 91, 663-671	4.7	24
99	Hydrolytic degradation of carbohydrate-based aromatic homo- and co-polyesters analogous to PET and PEI. <i>Polymer Degradation and Stability</i> , 2006 , 91, 2654-2659	4.7	13
98	Molecular dynamics of poly(butylene tert-butyl isophthalate) and its copolymers with poly(butylene terephthalate) as revealed by broadband dielectric spectroscopy. <i>Polymer</i> , 2006 , 47, 70	78 ³ 7084	1 ⁵
97	High molecular weight methyl ester of microbial poly([I-malic acid): Synthesis and crystallization. <i>Polymer</i> , 2006 , 47, 6501-6508	3.9	16
96	Carbohydrate-Based Polycarbonates. Synthesis, Structure, and Biodegradation Studies. <i>Macromolecules</i> , 2005 , 38, 8664-8670	5.5	43
95	Homo- and copolymerization of styrene and 1-alkene using Ph2ZnEt(Ind)2ZrCl2MAO initiator systems. <i>European Polymer Journal</i> , 2005 , 41, 1013-1019	5.2	17
94	Poly(ethylene terephthalate) copolymers containing 1,4-cyclohexane dicarboxylate units. <i>European Polymer Journal</i> , 2005 , 41, 1493-1501	5.2	28
93	Comb-like ionic complexes of cationic surfactants with bacterial poly(gamma-glutamic acid) of racemic composition. <i>Macromolecular Bioscience</i> , 2005 , 5, 30-8	5.5	23
92	Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization. <i>Macromolecular Bioscience</i> , 2005 , 5, 172-6	5.5	8
91	Acylated and hydroxylated polyamides derived from l-tartaric acid. <i>Polymer</i> , 2005 , 46, 2854-2861	3.9	18
90	Poly(butylene terephthalate-co-5-tert-butyl isophthalate) copolyesters: Synthesis, characterization, and properties. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 92-100	2.5	8
89	Aromatic polyesters from naturally occurring monosaccharides: Poly(ethylene terephthalate) and poly(ethylene isophthalate) analogs derived from D-mannitol and galactitol. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 4570-4577	2.5	21
88	Aromatic homo- and copolyesters from naturally occurring monosaccharides: PET and PEI analogs derived from L-arabinitol and xylitol. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 6394-6410	2.5	25
87	Poly(ethylene isophthalate)s: effect of the tert-butyl substituent on structure and properties. <i>Polymer</i> , 2004 , 45, 5005-5012	3.9	9

(2003-2004)

86	Linear polyamides from L-malic acid and alkanediamines. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 1566-1575	2.5	11	
85	Synthesis and characterization of polyamides obtained from tartaric acid and l-lysine. <i>European Polymer Journal</i> , 2004 , 40, 2699-2708	5.2	19	
84	Biodegradability of aromatic building blocks for poly(ethylene terephthalate) copolyesters. <i>Polymer Degradation and Stability</i> , 2004 , 85, 865-871	4.7	17	
83	Poly(ester amide)s Derived froml-Malic Acid. <i>Macromolecules</i> , 2004 , 37, 2067-2075	5.5	15	
82	Comblike complexes of bacterial poly(gamma,d-glutamic acid) and cationic surfactants. <i>Biomacromolecules</i> , 2004 , 5, 144-52	6.9	33	
81	Synthesis and Characterization of Linear Polyamides Derived from l-Arabinitol and Xylitol. <i>Macromolecules</i> , 2004 , 37, 5550-5556	5.5	38	
80	Preparation and hydrolytic degradation of sulfonated poly(ethylene terephthalate) copolymers. <i>Polymer</i> , 2003 , 44, 7281-7289	3.9	25	
79	Copoly([dl-glutamate)s containing short and long linear alkyl side chains. <i>Polymer</i> , 2003 , 44, 7557-7564	3.9	11	
78	Thermally induced phase transition in helical comblike poly(beta-peptide)s: an atomistic simulation. <i>Journal of Computational Chemistry</i> , 2003 , 24, 770-8	3.5	2	
77	On the Lamellar Crystal Structure of Nylons 6,8 and 8,10: A Study Combining Electron Microscopy and Energy Analysis. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 83-88	2.6	4	
76	Microstructure and crystallization of melt-mixed poly(ethylene terephthalate)/poly(ethylene isophthalate) blends. <i>Journal of Applied Polymer Science</i> , 2003 , 90, 3076-3086	2.9	10	
75	Hydrolytic degradation of poly(ethylene terephthalate) copolymers containing nitrated units. <i>Polymer Degradation and Stability</i> , 2003 , 79, 353-358	4.7	11	
74	Solubility of N2 in poly(\(\hatharmooth\)-hexyl-\(\hatharmooth\)-aspartate): Temperature and force-field dependence. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 2928-2936	2.6	2	
73	Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization. <i>Polymer International</i> , 2003 , 52, 321-336	3.3	42	
72	Poly(ethylene terephthalate) terpolyesters containing isophthalic and 5-tert-butylisophthalic units. Journal of Polymer Science Part A, 2003, 41, 124-134	2.5	6	
71	Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate) block copolymers. <i>Polymer</i> , 2003 , 44, 1321-1330	3.9	73	
70	Comblike Alkyl Esters of Biosynthetic Poly(Eglutamic acid). 2. Supramolecular Structure and Thermal Transitions. <i>Macromolecules</i> , 2003 , 36, 7567-7576	5.5	26	
69	Comblike poly(alpha-alkyl gamma-glutamate)s: computer simulation studies of an intermediate thermal phase. <i>Biomacromolecules</i> , 2003 , 4, 87-95	6.9	9	

68	Aplicaciones de los m E odos computacionales al estudio de la estructura y propiedades de polineros. <i>Polimeros</i> , 2003 , 13, 250-264	1.6	2
67	Synthesis of Poly(⊞lkyl IL-aspartate)s by Transesterification. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 849-852	4.8	
66	Structural characterization and thermal properties of poly(ethylene terephthalate) copolymers containing 2-butyl-2-ethyl-1,3-propanediol. <i>Journal of Applied Polymer Science</i> , 2002 , 86, 1077-1086	2.9	5
65	Poly(ethylene terephthalate) copolymers containing 5-nitroisophthalic units. III. Methanolytic degradation. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 76-87	2.5	6
64	Poly(ethylene terephthalate) copolymers containing nitroterephthalic units. III. Methanolytic degradation. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 2276-2285	2.5	8
63	Crystalline poly(4-methyl-1-pentene): Structure and solubility of gas molecules. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2002 , 40, 2037-2049	2.6	5
62	Poly(ethylene terephthalate) copolymers containing nitroterephthalic units. II. Crystallization and conformational studies. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2002 , 40, 2759-2771	2.6	4
61	Crystallization and properties of poly(ethylene terephthalate) copolymers containing 5-tert-butyl isophthalic units. <i>Polymer</i> , 2002 , 43, 7529-7537	3.9	13
60	Sequence Analysis of Poly(ethylene terephthalate) Terpolyesters Containing Isophthalic and tert-Butylisophthalic Units by 13C NMR. <i>Macromolecules</i> , 2002 , 35, 314-317	5.5	10
59	Permeation Properties of the Stereoregular Nylon-3 Analogue, Poly(Hexyl El-aspartate). <i>Macromolecules</i> , 2002 , 35, 4521-4530	5.5	13
58	Poly(alpha-alkyl gamma-glutamate)s of microbial origin. 2. On the microstructure and crystal structure of poly(alpha-ethyl gamma-glutamate)s. <i>Biomacromolecules</i> , 2002 , 3, 1078-86	6.9	10
57	On the Crystal Structure of Poly(benzyl 阳l-glutamate) of Microbial Origin. <i>Macromolecules</i> , 2002 , 35, 8774-8780	5.5	18
56	Poly(日lkyl 回lutamate)s of microbial origin: I. Ester derivatization of poly(回lutamic acid) and thermal degradation. <i>Polymer</i> , 2001 , 42, 9319-9327	3.9	16
55	Poly(ethylene terephthalate) copolymers containing 5-tert-butyl isophthalic units. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 1994-2004	2.5	24
54	Poly(ethylene terephthalate) copolyesters derived from (2S,3S)-2,3-dimethoxy-1,4-butanediol. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 3250-3262	2.5	27
53	Poly(ethylene terephthalate) copolymers containing 5-nitroisophthalic units. II. Crystallization studies. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 1553-1564	2.6	11
52	Water-soluble esters of biosynthetic poly(頃lutamic acid). <i>Journal of Applied Polymer Science</i> , 2001 , 82, 2027-2036	2.9	7
51	Alternating Copoly(ester amide)s derived from Amino Alcohols and L-Tartaric and Succinic Acids. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 236-244	2.6	22

(2000-2001)

50	On the Phase B of Comb-Like Poly(日kyl-L-aspartate)s: A Simulation of the Solubility of Small Penetrants. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 564-573	2.6	14
49	Synthesis, Structure and Crystal Morphology of Nylon 2/16. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 2606-2613	2.6	3
48	MarkHouwink Parameters of Biosynthetic Poly(Eglutamic acid) in Aqueous Solution. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 3253-3256	2.6	19
47	Normal modes and their dispersion in poly(\(\frac{1}{2}\) sobutyl-\(\frac{1}{2}\)-aspartate): I. 4/1 Helix. European Polymer Journal, 2001 , 37, 815-828	5.2	3
46	Normal modes and their dispersion in poly(\(\text{H}\)sobutyl, \(\text{H}\)-aspartate): II. 13/4 Helix. <i>European Polymer Journal</i> , 2001 , 37, 829-841	5.2	5
45	Copolymerization of styrene by diphenylzinc-additive systems I. Copolymerization of styrene/p-tert-butylstyrene by Ph2ZnthetalloceneMAO systems. <i>European Polymer Journal</i> , 2001 , 37, 1001-1006	5.2	17
44	Comblike Alkyl Esters of Biosynthetic Poly(Eglutamic acid). 1. Synthesis and Characterization. <i>Macromolecules</i> , 2001 , 34, 7868-7875	5.5	34
43	Synthesis and Structural Studies of 2,3-Disubstituted Poly(Epeptide)s. <i>Macromolecules</i> , 2001 , 34, 5042-5	50;43	8
42	Structure and morphology of nylon 46 lamellar crystals: Electron microscopy and energy calculations. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2000 , 38, 41-52	2.6	26
41	Poly(ethylene terephthalate) copolymers containing 5-nitroisophthalic units. I. Synthesis and characterization. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 1934-1942	2.5	17
40	A microscopic view of a helical poly(Epeptide): Molecular dynamics simulations of a 20-residue un-ionized poly(ED-glutamic acid) in water. <i>Macromolecular Theory and Simulations</i> , 2000 , 9, 543-549	1.5	8
39	Poly(ester amide)s derived from L-tartaric acid and amino alcohols. II. Aregic polymers. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 2687-2696	2.5	14
38	Poly(ethylene terephthalate) copolymers containing nitroterephthalic units. I. Synthesis and characterization. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 3761-3770	2.5	21
37	Optically active polyamides containing 1,3-dioxolane cycles in the backbone. <i>Polymer</i> , 2000 , 41, 4869-4	87,9)	16
36	Structure of the Extended Crystal Forms of Nylon-6. <i>Macromolecules</i> , 2000 , 33, 5754-5756	5.5	16
35	Structure of Nylon 46 Lamellar Crystals: An Investigation Including Adjacent Chain Folding. <i>Macromolecules</i> , 2000 , 33, 8756-8763	5.5	13
34	Stereoregular Copolyamides Derived fromd-Xylose andl-Arabinose. <i>Macromolecules</i> , 2000 , 33, 2030-20	38 .5	222
33	Sequence Analysis of Poly(ethylene terephthalate-co-isophthalate) Copolymers by 13C NMR. <i>Macromolecules</i> , 2000 , 33, 4596-4598	5.5	27

32	Conformational analysis of the 13/4 to 4/1 helical transition in poly(Hsobutyl IL-aspartate). <i>Polymer</i> , 1999 , 40, 5647-5654	3.9	
31	Biosynthesis and ultrasonic degradation of bacterial poly(Eglutamic acid) 1999 , 63, 110-115		57
30	A review on the potential biodegradability of poly(ethylene terephthalate). <i>Polymer International</i> , 1999 , 48, 346-352	3.3	124
29	Synthesis of heterotelechelic poly(ethylene glycol)s and their characterization by MALDI-TOF-MS. <i>Macromolecular Chemistry and Physics</i> , 1999 , 200, 1363-1373	2.6	17
28	Helical Poly(Epeptides): The HelixCoil Transition of Poly(Ealkyl-Easpartate)s in Solution. Macromolecules, 1999, 32, 3257-3263	5.5	30
27	Poly(ester amide)s Derived from l-Tartaric Acid and Amino Alcohols. 1. Regic Polymers. <i>Macromolecules</i> , 1999 , 32, 8015-8023	5.5	33
26	Hydrolytic Degradation of Poly(ester amide)s Made from Tartaric and Succinic Acids: Influence of the Chemical Structure and Microstructure on Degradation Rate. <i>Macromolecules</i> , 1999 , 32, 8033-8040	5.5	45
25	On the helical conformation of un-ionized poly(gamma-D-glutamic acid). <i>International Journal of Biological Macromolecules</i> , 1998 , 23, 175-84	7.9	52
24	Helical Nylons 3. Synthesis and Crystal Structure of Poly(El-aspartate)s with Branched Alkyl Side Chains. <i>Macromolecules</i> , 1998 , 31, 124-134	5.5	24
23	Conformational Analysis of (S)-4-(Cyclohexoxycarbonyl)-2-azetidinone. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 4208-4214	2.8	7
22	Helix Sense in Poly(⊞lkyl ⊞-aspartate)s. <i>Macromolecules</i> , 1997 , 30, 6662-6667	5.5	10
21	Conformation and Crystal Structure of Poly(Eycloalkyl-El-aspartate)s. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 4215-4223	2.8	14
20	Theoretical study of the conformational and electrostatic properties of C4-monosubstituted 2-azetidinones. <i>Structural Chemistry</i> , 1997 , 8, 39-47	1.8	11
19	Molecular packing and conformational behaviour of poly (El -aspartate)s containing medium size linear alkyl side-chain. <i>Polymer</i> , 1997 , 38, 3477-3484	3.9	16
18	Degradable poly(ester amide)s based on l-tartaric acid. <i>Polymer</i> , 1997 , 38, 4935-4944	3.9	48
17	Ultrasonic degradation of polyaspartates and polyglutamates. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1997 , 35, 2379-2384	2.6	13
16	Effect of the side group on the helix-forming tendency of ⊞lkyl-L-aspartamyl residues. <i>Biopolymers</i> , 1997 , 41, 721-729	2.2	19
15	Stereocopolyamides Derived from 2,3-Di-O-Methyl-d- and -l-Tartaric Acids and Hexamethylenediamine. 2. Influence of the Configurational Composition on the Crystal Structure of Optically Compensated Systems. <i>Macromolecules</i> , 1996 , 29, 8413-8424	5.5	27

LIST OF PUBLICATIONS

14	Stereocopolyamides Derived from 2,3-Di-O-methyl-d- and -l-tartaric Acids and Hexamethylenediamine. 1. Synthesis, Characterization, and Compared Properties. <i>Macromolecules</i> , 1996 , 29, 8404-8412	5.5	27
13	Effects of Aqueous and Organic Solvents on the Conformational Properties of the Helix-Forming alpha-Methyl-beta-L-aspartamyl Residue. <i>Journal of Organic Chemistry</i> , 1996 , 61, 6849-6855	4.2	22
12	On the mechanical properties of poly(ethylene terephthalate). Force-field parametrization and conformational analysis for the prediction of the crystal moduli. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1996 , 34, 963-973	2.6	9
11	Analysis of the conformational preferences of (4R,5R)-4,5-bis(alkylcarbamoyl)-1,3-dioxolanes. <i>Tetrahedron</i> , 1996 , 52, 8275-8286	2.4	6
10	Study of the Amide.cntdotcntdotcntdot.Ester Hydrogen Bond in Small Molecules and Its Influence on the Conformation of Polypeptides and Related Polymers. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 17653-17661		29
9	Analysis of the Helical Conformations in Poly (.betaL-aspartate)s: Poly(.alphan-butyl .betaL-aspartate) and Poly[.alpha(2-methoxyethyl) .betaL-aspartate]. <i>Macromolecules</i> , 1995 , 28, 448	37 ⁵ -449	4 ³⁴
8	Structure and Thermal Properties of New Comblike Polyamides: Helical Poly(.betaL-aspartate)s Containing Linear Alkyl Side Chains. <i>Macromolecules</i> , 1995 , 28, 5535-5546	5.5	62
7	Poly(Butyl IL-aspartate): A second alkoxycarbonyl nylon-3 derivative in helical conformation. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 253-268	2.6	26
6	Poly(EL-aspartate)s Containing Ethylene Oxide Units in the Side Chain: Synthesis and Structural Studies. <i>Polymer Journal</i> , 1994 , 26, 694-704	2.7	9
5	Solvent polarity effects on the anionic polymerization of 4-(S)-isobutoxycarbonyl-2-azetidinone. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1992 , 13, 173-178		10
4	Morphology and crystalline structure of nylon-2/6. <i>Polymer</i> , 1987 , 28, 209-212	3.9	22
3	Synthesis and structural data of nylon 1,4. <i>Journal of Polymer Science Part A</i> , 1987 , 25, 1445-1448	2.5	5
2	Crystal structure of nylons 2/3/3 and 1,3. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1987 , 25, 513-523	2.6	17
1	Three-dimensional reconstruction of chromatin fibers. <i>Journal of Biomolecular Structure and Dynamics</i> , 1983 , 1, 705-14	3.6	22