Denis D Sukachev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4441656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, 847-850.	12.6	570
2	Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580, 60-64.	27.8	325
3	Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10Âms with Single-Shot State Readout. Physical Review Letters, 2017, 119, 223602.	7.8	300
4	Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. Physical Review Letters, 2017, 118, 223603.	7.8	218
5	Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science, 2018, 362, 662-665.	12.6	189
6	Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nature Communications, 2017, 8, 15376.	12.8	141
7	Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. Physical Review Letters, 2019, 123, 183602.	7.8	133
8	Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation. Physical Review Applied, 2016, 5, .	3.8	131
9	Optical and microwave control of germanium-vacancy center spins in diamond. Physical Review B, 2017, 96, .	3.2	125
10	Fiber-Coupled Diamond Quantum Nanophotonic Interface. Physical Review Applied, 2017, 8, .	3.8	115
11	An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical Review B, 2019, 100, .	3.2	111
12	All-optical nanoscale thermometry with silicon-vacancy centers in diamond. Applied Physics Letters, 2018, 112, .	3.3	100
13	Magneto-optical trap for thulium atoms. Physical Review A, 2010, 82, .	2.5	80
14	Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Nature Communications, 2019, 10, 1724.	12.8	66
15	Inner-shell magnetic dipole transition in Tm atoms: A candidate for optical lattice clocks. Physical Review A, 2016, 94, .	2.5	37
16	Optomechanical interface between telecom photons and spin quantum memory. Nature Physics, 2021, 17, 1420-1425.	16.7	35
17	Secondary laser cooling and capturing of thulium atoms in traps. Quantum Electronics, 2014, 44, 515-520.	1.0	18
18	Processing light with an optically tunable mechanical memory. Nature Communications, 2021, 12, 663.	12.8	17

2

DENIS D SUKACHEV

#	Article	IF	CITATIONS
19	Sub-doppler laser cooling of thulium atoms in a magneto-optical trap. JETP Letters, 2010, 92, 703-706.	1.4	16
20	Large quantum networks. Physics-Uspekhi, 2021, 64, 1021-1037.	2.2	16
21	Ultracold lanthanides: from optical clock to a quantum simulator. Physics-Uspekhi, 2016, 59, 168-173.	2.2	15
22	Two-stage laser cooling and optical trapping of thulium atoms. Laser Physics, 2014, 24, 074018.	1.2	13
23	Light-assisted collisions in ultracold Tm atoms. Physical Review A, 2017, 95, .	2.5	13
24	Two-temperature momentum distribution in a thulium magneto-optical trap. Physical Review A, 2017, 96, .	2.5	13
25	Zeeman slowing of thulium atoms. Optics Letters, 2009, 34, 2955.	3.3	11
26	Detection of the clock transition (1.14 μm) in ultra-cold thulium atoms. Quantum Electronics, 2015, 45, 482-485.	1.0	11
27	Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>5</mml:mn><mml:mi>D</mml:mi></mml:math polarizability in laser-cooled Rb atoms. Physical Review A, 2014, 89, .	> 1 esvel	9
28	Ultrastable Laser System for Spectroscopy of the 1.14 μm Inner-Shell Clock Transition in Tm and Its Absolute Frequency Measurement. Journal of Russian Laser Research, 2019, 40, 540-546.	0.6	8
29	Improved measurement of the hyperfine structure of the laser cooling level \$\$4f^{12}(^3H_6)5d_{5/2}6s^2\$\$ 4 f 12 (3 H 6) 5 d 5 / 2 6 s 2 \$\$(J=9/2)\$\$ (J = 9 / 2) in \$\${}^{169}_{,,69}{{mathrm {Tm}}}\$\$ 69 169 Tm. Applied Physics B: Lasers and Optics, 2015, 121, 275-282.	2.2	7
30	Magnetic trap for thulium atoms. Quantum Electronics, 2011, 41, 765-768.	1.0	6
31	Laser cooling of thulium atoms. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.784314 rg	gBT /Over 0.6	loçk 10 Tf 5
32	Methods for determining the polarisability of the fine structure levels in the ground state of the thulium atom. Quantum Electronics, 2017, 47, 479-483.	1.0	6
33	Collimation of a thulium atomic beam by two-dimensional optical molasses. Quantum Electronics, 2013, 43, 374-378.	1.0	5
34	Measurement of the 5D level polarizabilities in laser cooled Rb atoms. Journal of Physics: Conference Series, 2015, 635, 092121.	0.4	1
35	Laser cooling and trapping of thulium atoms for further investigation of collisional properties. Journal of Physics: Conference Series, 2015, 635, 092117.	0.4	1
36	Estimation of uncertainty budget for a thulium optical clock. AIP Conference Proceedings, 2020, , .	0.4	1

DENIS D SUKACHEV

#	Article	IF	CITATIONS
37	Detection of 1.14 μm Magnetic Dipole Transition in Ultracold Thulium. EPJ Web of Conferences, 2015, 103, 06002.	0.3	0
38	Thulium atom as new platform for quantum simulations and quantum information. , 2016, , .		0
39	Maskless Creation of Silicon Vacancy Centers in Photonic Crystal Cavities. , 2016, , .		0
40	Measurement of the upper clock level lifetime in169Tm. Journal of Physics: Conference Series, 2017, 941, 012114.	0.4	0
41	An integrated quantum network node in diamond. , 2019, , .		0
42	A nanophotonic interface to long-lived quantum memories in diamond. , 2019, , .		0
43	Photon-mediated interactions between quantum emitters in a diamond nanocavity. , 2019, , .		0