
Tomohiro Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signage visibility analysis and optimization system using BIM-enabled virtual reality (VR) environments. Advanced Engineering Informatics, 2017, 32, 248-262.	4.0	85
2	Integrating building information modeling and virtual reality development engines for building indoor lighting design. Visualization in Engineering, 2017, 5, .	8.8	83
3	Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning. Urban Forestry and Urban Greening, 2021, 59, 126995.	2.3	73
4	Integrating 4D thermal information with BIM for building envelope thermal performance analysis and thermal comfort evaluation in naturally ventilated environments. Building and Environment, 2017, 124, 194-208.	3.0	64
5	Optimizing the evaluation of building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation. Building and Environment, 2018, 136, 128-145.	3.0	62
6	An invisible height evaluation system for building height regulation to preserve good landscapes using augmented reality. Automation in Construction, 2011, 20, 228-235.	4.8	45
7	An indoor thermal environment design system for renovation using augmented reality. Journal of Computational Design and Engineering, 2019, 6, 179-188.	1.5	42
8	Improving the accuracy of BIM-based quantity takeoff for compound elements. Automation in Construction, 2019, 106, 102891.	4.8	41
9	Factors in the development of urban underground space surrounding metro stations: A case study of Osaka, Japan. Tunnelling and Underground Space Technology, 2019, 91, 103009.	3.0	35
10	Exploring the association between street built environment and street vitality using deep learning methods. Sustainable Cities and Society, 2022, 79, 103656.	5.1	34
11	Sky view factor estimation from street view images based on semantic segmentation. Urban Climate, 2021, 40, 100999.	2.4	31
12	Assessing future landscapes using enhanced mixed reality with semantic segmentation by deep learning. Advanced Engineering Informatics, 2021, 48, 101281.	4.0	26
13	Development of a City-Scale Approach for Façade Color Measurement with Building Functional Classification Using Deep Learning and Street View Images. ISPRS International Journal of Geo-Information, 2021, 10, 551.	1.4	23
14	Differences in spatial understanding between physical and virtual models. Frontiers of Architectural Research, 2014, 3, 28-35.	1.3	22
15	Automated modification of compound elements for accurate BIM-based quantity takeoff. Automation in Construction, 2020, 113, 103142.	4.8	20
16	Future landscape visualization using a city digital twin: integration of augmented reality and drones with implementation of 3D model-based occlusion handling. Journal of Computational Design and Engineering, 2022, 9, 837-856.	1.5	18
17	Diminished reality system with real-time object detection using deep learning for onsite landscape simulation during redevelopment. Environmental Modelling and Software, 2020, 131, 104759.	1.9	16
18	Automatic Object Removal With Obstructed Façades Completion Using Semantic Segmentation and Generative Adversarial Inpainting. IEEE Access, 2021, 9, 117486-117495.	2.6	16

Tomohiro Fukuda

#	Article	IF	CITATIONS
19	Improvement of registration accuracy of a handheld augmented reality system for urban landscape simulation. Frontiers of Architectural Research, 2014, 3, 386-397.	1.3	14
20	A synchronous distributed cloud-based virtual reality meeting system for architectural and urban design. Frontiers of Architectural Research, 2014, 3, 348-357.	1.3	12
21	Integrating Animated Computational Fluid Dynamics into Mixed Reality for Building-Renovation Design. Technologies, 2020, 8, 4.	3.0	11
22	A heatstroke prediction and prevention system for outdoor construction workers. Visualization in Engineering, 2013, 1, .	8.8	10
23	Polygonization of point clouds of repetitive components in civil infrastructure based on geometric similarities. Automation in Construction, 2018, 86, 99-117.	4.8	10
24	Development of an unwanted-feature removal system for Structure from Motion of repetitive infrastructure piers using deep learning. Advanced Engineering Informatics, 2020, 46, 101169.	4.0	10
25	Automated point cloud classification using an image-based instance segmentation for structure from motion. Automation in Construction, 2021, 129, 103804.	4.8	10
26	An enhanced 3D model and generative adversarial network for automated generation of horizontal building mask images and cloudless aerial photographs. Advanced Engineering Informatics, 2021, 50, 101380.	4.0	9
27	The Accuracy Enhancement of Architectural Walls Quantity Takeoff for Schematic BIM Models. , 2018, , .		9
28	Citizen Participatory Design Method Using VR and a Blog as a Media in the Process. International Journal of Architectural Computing, 2009, 7, 217-233.	0.9	7
29	Development of High-Definition Virtual Reality for Historical Architectural and Urban Digital Reconstruction: A Case Study of Azuchi Castle and Old Castle Town in 1581. Communications in Computer and Information Science, 2015, , 75-89.	0.4	7
30	Collaboration Support System for City Plans or Community Designs Based on VR/CG Technology. International Journal of Architectural Computing, 2003, 1, 461-469.	0.9	6
31	A dynamic physical model based on a 3D digital model for architectural rapid prototyping. Automation in Construction, 2016, 72, 9-17.	4.8	6
32	Automatic Object Detection from Digital Images by Deep Learning with Transfer Learning. Lecture Notes in Computer Science, 2018, , 3-15.	1.0	6
33	CREATING PRODUCT MODELS FROM POINT CLOUD OF CIVIL STRUCTURES BASED ON GEOMETRIC SIMILARITY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-4/W5, 137-141.	0.2	6
34	Virtual reality rendering methods for training deep learning, analysing landscapes, and preventing virtual reality sickness. International Journal of Architectural Computing, 2021, 19, 190-207.	0.9	5
35	WAY-FINDING ASSISTANCE SYSTEM FOR UNDERGROUND FACILITIES USING AUGMENTED REALITY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-4/W5, 37-41.	0.2	5
36	Visualization of Indoor Thermal Conditions Using Augmented Reality for Improving Thermal Environment. , 2015, , .		3

3

Τομομικό Fukuda

#	Article	IF	CITATIONS
37	DEVELOPMENT OF TOURISM MANAGEMENT SUPPORTING SYSTEM WHICH CAN COLLECT TOURIST'S ASPECTS. Journal of Environmental Engineering (Japan), 2011, 76, 449-458.	0.1	2
38	Availability of Mobile Augmented Reality System for Urban Landscape Simulation. Lecture Notes in Computer Science, 2012, , 231-238.	1.0	2
39	Integration of a Structure from Motion into Virtual and Augmented Reality for Architectural and Urban Simulation. Communications in Computer and Information Science, 2017, , 60-77.	0.4	2
40	Development of a Semantic Segmentation System for Dynamic Occlusion Handling in Mixed Reality for Landscape Simulation. , 0, , .		2
41	DEVELOPMENT OF A DYNAMIC ENVIRONMENTAL KNOWLEDGE WEBSITE FOR A SUSTAINABLE ENVIRONMENTAL DESIGN. AIJ Journal of Technology and Design, 2008, 14, 651-654.	0.1	1
42	DEVELOPMENT OF LIGHTING METHOD FOR STRENGTHENING SURVEILLANCE AND TERRITORY IN RESIDENTIAL AREAS. Journal of Environmental Engineering (Japan), 2010, 75, 321-329.	0.1	1
43	PHOTOMETRIC REGISTRATION USING A COLOR CHART FOR LIGHTING SIMULATION IN AUGMENTED REALITY. Journal of Environmental Engineering (Japan), 2013, 78, 661-668.	0.1	1
44	Comparison of Deep Learning Model Precision for Detecting Concrete Deterioration Types from Digital Images. , 2019, , .		1
45	A Large-Scale Measurement and Quantitative Analysis Method of Façade Color in the Urban Street Using Deep Learning. , 2021, , 93-102.		1
46	Simulation of an Historical Building Using a Tablet MR System. , 2007, , 45-58.		1
47	Polygonization of Point Cloud of Tunnels Using Lofting Operation. International Journal of Automation Technology, 2018, 12, 356-368.	0.5	1
48	Development of BIM-based quantity takeoff for light-gauge steel wall framing systems. Journal of Information Technology in Construction, 2020, 25, 522-544.	1.4	1
49	AR-based visibility evaluation for preserving landscapes of historical buildings. , 2010, , .		0
50	DEVELOPMENT OF A CITY PRESENTATION SYSTEM BY VIEWPOINT LINKING OF A PHYSICAL SCALE MODEL AND VR. Journal of Environmental Engineering (Japan), 2011, 76, 953-961.	0.1	0
51	A BASIC STUDY ON AMBIENT CONTRAST OF A PC DISPLAY FOR OUTDOOR USE. All Journal of Technology and Design, 2011, 17, 389-392.	0.1	0
52	A Management System of Roadside Trees Using RFID and Ontology. , 2011, , .		0
53	RELATION BETWEEN TRANSITIONS IN THE NOH STAGE STYLE AFTER ZEAMI AND "JOHAKYU FIVE PARTS". Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2016, 81, 2317-2326.	0.1	0
54	Cooperative Integration of Product Model and Sensor Data Model for Knowledge Discovery. Lecture Notes in Computer Science, 2012, , 49-52.	1.0	0

#	Article	IF	CITATIONS
55	Automatic Detection of Positions and Shapes of Various Objects at Construction Sites from Digital Images Using Deep Learning. , 2019, , 55-77.		0
56	Development of Segmentation-Rendering on Virtual Reality for Training Deep-learning, Simulating Landscapes and Advanced User Experience. , 0, , .		0
57	DEVELOPMENT OF VISUALIZATION SYSTEM FOR SOUND ENVIRONMENT SIMULATION OF DISASTER RADIO USING MIXED REALITY. Journal of Environmental Engineering (Japan), 2020, 85, 757-765.	0.1	Ο
58	A SERVER-SIDE RENDERING METHOD FOR HANDLING LARGE-VOLUME 3D MODELS OF ENVIRONMENTAL DESIGN IN WEB-BASED AUGMENTED REALITY. Journal of Environmental Engineering (Japan), 2022, 87, 157-168.	0.1	0
59	Development of an Autopilot Model for Shield Tunneling Machines Using Machine Learning. , 2022, , .		0