Anna-Janina Behrens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440480/publications.pdf

Version: 2024-02-01

23 papers 1,995 citations

³⁹⁴²⁸⁶
19
h-index

23 g-index

25 all docs

25 docs citations

25 times ranked 2425 citing authors

#	Article	IF	CITATIONS
1	Identification of N-glycans with GalNAc-containing antennae from recombinant HIV trimers by ion mobility and negative ion fragmentation. Analytical and Bioanalytical Chemistry, 2021, 413, 7229-7240.	1.9	1
2	Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Analytical and Bioanalytical Chemistry, 2021, 413, 7277-7294.	1.9	0
3	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11
4	Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure, 2020, 28, 897-909.e6.	1.6	46
5	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	5.8	149
6	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	5.8	116
7	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	1.8	23
8	cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIVâ€1 envelope glycoprotein vaccine candidate. Biotechnology and Bioengineering, 2018, 115, 885-899.	1.7	75
9	Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nature Communications, 2018, 9, 1956.	5.8	50
10	Structure-Guided Redesign Improves NFL HIV Env Trimer Integrity and Identifies an Inter-Protomer Disulfide Permitting Post-Expression Cleavage. Frontiers in Immunology, 2018, 9, 1631.	2.2	37
11	Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Frontiers in Immunology, 2018, 9, 1116.	2.2	27
12	Structural principles controlling HIV envelope glycosylation. Current Opinion in Structural Biology, 2017, 44, 125-133.	2.6	99
13	Global N-Glycan Site Occupancy of HIV-1 gp120 by Metabolic Engineering and High-Resolution Intact Mass Spectrometry. ACS Chemical Biology, 2017, 12, 357-361.	1.6	34
14	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	2.9	171
15	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	4.2	151
16	Glycosylation profiling to evaluate glycoprotein immunogens against HIV-1. Expert Review of Proteomics, 2017, 14, 881-890.	1.3	24
17	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	1.5	77
18	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	13.5	379

#	Article	IF	CITATIONS
19	Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs, 2016, 8, 1498-1511.	2.6	14
20	Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7154-7159.	3.3	87
21	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	2.9	250
22	Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nature Communications, 2015, 6, 7479.	5.8	113
23	Type IV Pilus Assembly in Pseudomonas aeruginosa over a Broad Range of Cyclic di-GMP Concentrations. Journal of Bacteriology, 2012, 194, 4285-4294.	1.0	58