Harald Giessen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440329/publications.pdf

Version: 2024-02-01

581 papers

38,339 citations

90 h-index 183 g-index

593 all docs 593 docs citations

times ranked

593

23567 citing authors

#	Article	IF	CITATIONS
1	Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design. Optics Express, 2022, 30, 707.	3.4	21
2	Emission spectroscopy of NaYF ₄ :Eu nanorods optically trapped by Fresnel lens fibers. Photonics Research, 2022, 10, 332.	7.0	9
3	Fresnel lens optical fiber tweezers to evaluate the vitality of single algae cells. Optics Letters, 2022, 47, 170.	3.3	7
4	Nanophotonic Chiral Sensing: How Does It Actually Work?. ACS Nano, 2022, 16, 2822-2832.	14.6	30
5	Burst-mode femtosecond fiber-feedback optical parametric oscillator. Optics Letters, 2022, 47, 525.	3.3	4
6	Femtosecond tunable light source with variable repetition rate between 640 kHz and 41â€MHz with a 130â€dB temporal pulse contrast ratio. Optics Express, 2022, 30, 1.	3.4	8
7	Micro-3D-printed multi-aperture freeform ultra-wide-angle systems: production, characterization, and correction., 2022,,.		O
8	Atomic layer deposition of conformal anti-reflective coatings on complex 3D printed micro-optical systems. Optical Materials Express, 2022, 12, 2063.	3.0	12
9	3Dâ€Printed Micro Lensâ€inâ€Lens for In Vivo Multimodal Microendoscopy. Small, 2022, 18, e2107032.	10.0	21
10	Machine Learning Methods of Regression for Plasmonic Nanoantenna Glucose Sensing. Sensors, 2022, 22, 7.	3.8	7
11	Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots. Optics Express, 2022, 30, 15913.	3.4	20
12	3Dâ€Printed Micro Lensâ€inâ€Lens for In Vivo Multimodal Microendoscopy (Small 17/2022). Small, 2022, 18, .	10.0	0
13	Sub-40 fs optical parametric oscillator beyond the gain bandwidth limit. Optics Letters, 2022, 47, 3099.	3.3	1
14	Predicting Laser-Induced Colors of Random Plasmonic Metasurfaces and Optimizing Image Multiplexing Using Deep Learning. ACS Nano, 2022, 16, 9410-9419.	14.6	7
15	Microscopic 3D printed optical tweezers for atomic quantum technology. Quantum Science and Technology, 2022, 7, 045011.	5.8	11
16	Topological plasmonics: Ultrafast vector movies of plasmonic skyrmions on the nanoscale. , 2021, , .		0
17	Quantum Dot Single-Photon Emission Coupled into Single-Mode Fibers with 3D Printed Micro-Objectives. , 2021, , .		0
18	3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light Advanced Manufacturing, 2021, 2, 103.	5.1	26

#	Article	IF	Citations
19	Watching In Situ the Hydrogen Diffusion Dynamics in Magnesium on the Nanoscale. , 2021, , .		O
20	Nanophotonic Chiral Sensing: How Does it Actually Work?., 2021,,.		1
21	Interaction of edge exciton polaritons with engineered defects in the hyperbolic material Bi2Se3. Communications Materials, 2021, 2, .	6.9	13
22	SEIRA Sensing of Different Sugars at Physiological Concentrations. , 2021, , .		0
23	3D-printed miniature spectrometer for the visible range with a 100 × 100 μm ² footprint. Light Advanced Manufacturing, 2021, 2, 20.	5.1	38
24	3D Printed Hybrid Refractive/Diffractive Achromat and Apochromat for the Visible Wavelength Range, , 2021, , .		0
25	Alignment-Free Mid-IR Source Tunable From 5 to 20 µm by Mixing Two Independently Tunable OPOs. , 2021, , .		0
26	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	6.6	2
27	Measuring Molecular Diffusion Through Thin Polymer Films with Dual-Band Plasmonic Antennas. ACS Nano, 2021, 15, 10393-10405.	14.6	6
28	Liquid Hydrogenation of Plasmonic Nanoantennas via Alcohol Deprotonation. ACS Photonics, 2021, 8, 1810-1816.	6.6	2
29	Niobium nitride plasmonic perfect absorbers for tunable infrared superconducting nanowire photodetection. Optics Express, 2021, 29, 17087.	3.4	5
30	3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range. Optics Letters, 2021, 46, 2485.	3.3	26
31	Shaping the Color and Angular Appearance of Plasmonic Metasurfaces with Tailored Disorder. ACS Nano, 2021, 15, 10318-10327.	14.6	21
32	Femtosecond Fieldâ€Driven Onâ€Chip Unidirectional Electronic Currents in Nonadiabatic Tunneling Regime. Laser and Photonics Reviews, 2021, 15, 2000475.	8.7	10
33	Multiphoton Photoluminescence in Hybrid Plasmon–Fiber Cavities with Au and Au@Pd Nanobipyramids: Two-Photon versus Four-Photon Processes and Rapid Quenching. ACS Photonics, 2021, 8, 2088-2094.	6.6	8
34	Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS Nano, 2021, 15, 13653-13661.	14.6	20
35	Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. ELight, 2021, 1 , .	23.9	132
36	Superconducting NbN plasmonic perfect absorbers for tunable single photon near- and mid-IR photodetection. , 2021, , .		0

#	Article	IF	Citations
37	Robust and rapidly tunable light source for SRS/CARS microscopy with extremely low-intensity noise. , 2021, , .		O
38	Femtosecond Tunable Light Source with Variable Repetition Rate and Ultra-high Pulse Contrast Ratio. , 2021, , .		1
39	Electrically Switchable Metasurface for Beam Steering Using PEDOT Polymers. , 2021, , .		1
40	Extraordinarily Strong Second Harmonic Generation Enhancement in Hybrid Plasmon-Fiber Cavity System., 2021,,.		0
41	Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components., 2021,,.		0
42	Tunable s-SNOM for Nanoscale Infrared Optical Measurement of Electronic Properties of Bilayer Graphene. ACS Photonics, 2021, 8, 418-423.	6.6	17
43	Electrically switchable metallic polymer nanoantennas. Science, 2021, 374, 612-616.	12.6	86
44	Influence of disorder on a Bragg microcavity. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 139.	2.1	3
45	Giant Second Harmonic Generation Enhancement in a High- <i>Q</i> Doubly Resonant Hybrid Plasmon–Fiber Cavity System. ACS Nano, 2021, 15, 19409-19417.	14.6	8
46	Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses. ACS Photonics, 2020, 7, 88-97.	6.6	80
47	Ultra-Broadband and Omnidirectional Perfect Absorber Based on Copper Nanowire/Carbon Nanotube Hierarchical Structure. ACS Photonics, 2020, 7, 366-374.	6.6	12
48	Quantum confined Rydberg excitons in reduced dimensions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 024001.	1.5	19
49	Electrons Generate Self-Complementary Broadband Vortex Light Beams Using Chiral Photon Sieves. Nano Letters, 2020, 20, 5975-5981.	9.1	18
50	Optical Carbon Dioxide Detection in the Visible Down to the Single Digit ppm Range Using Plasmonic Perfect Absorbers. ACS Sensors, 2020, 5, 2628-2635.	7.8	10
51	Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light: Science and Applications, 2020, 9, 124.	16.6	80
52	Quantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectives. APL Photonics, 2020, 5, .	5.7	35
53	Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Materials, 2020, 7, 035031.	4.4	32
54	Microwave probing of bulk dielectrics using superconducting coplanar resonators in distant-flip-chip geometry. Review of Scientific Instruments, 2020, 91, 054702.	1.3	2

#	Article	IF	Citations
55	Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale. Science Advances, 2020, 6, eaaz0566.	10.3	33
56	Tailored Optical Functionality by Combining Electronâ€Beam and Focused Goldâ€Ion Beam Lithography for Solid and Inverse Coupled Plasmonic Nanostructures. Advanced Optical Materials, 2020, 8, 2000879.	7.3	10
57	Low-Cost Hydrogen Sensor in the ppm Range with Purely Optical Readout. ACS Sensors, 2020, 5, 978-983.	7.8	43
58	Tailoring the plasmonic Fano resonance in metallic photonic crystals. Nanophotonics, 2020, 9, 523-531.	6.0	14
59	Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors. ACS Sensors, 2020, 5, 917-927.	7.8	39
60	Near-Unity Light Absorption in a Monolayer WS ₂ Van der Waals Heterostructure Cavity. Nano Letters, 2020, 20, 3545-3552.	9.1	48
61	Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 2020, 368, .	12.6	105
62	Switchable Optical Nonlinearity at the Metal to Insulator Transition in Magnesium Thin Films. ACS Photonics, 2020, 7, 1560-1568.	6.6	2
63	Electrically switchable metasurface for beam steering using PEDOT polymers. Journal of Optics (United Kingdom), 2020, 22, 124001.	2.2	15
64	Alignment-free difference frequency light source tunable from 5 to 20â€Âµm by mixing two independently tunable OPOs. Optics Express, 2020, 28, 11883.	3.4	4
65	Arrays of individually controllable optical tweezers based on 3D-printed microlens arrays. Optics Express, 2020, 28, 8640.	3.4	22
66	Mass-producible micro-optical elements by injection compression molding and focused ion beam structured titanium molding tools. Optics Letters, 2020, 45, 1184.	3.3	6
67	Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing. Optics Letters, 2020, 45, 2784.	3.3	18
68	Optimizing magnesium thin films for optical switching applications: rules and recipes. Optical Materials Express, 2020, 10, 1346.	3.0	11
69	Tailored nanocomposites for 3D printed micro-optics. Optical Materials Express, 2020, 10, 2345.	3.0	28
70	Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components. Optical Materials Express, 2020, 10, 2370.	3.0	41
71	Optical properties of niobium nitride plasmonic nanoantennas for the near- and mid-infrared spectral range. Optical Materials Express, 2020, 10, 2597.	3.0	12
72	Tailored micro-optical freeform holograms for integrated complex beam shaping. Optica, 2020, 7, 1279.	9.3	41

#	Article	IF	Citations
73	Electron-driven photon sources for correlative electron-photon spectroscopy with electron microscopes. Nanophotonics, 2020, 9, 4381-4406.	6.0	22
74	Compact harmonic cavity optical parametric oscillator for optical parametric amplifier seeding. Optics Express, 2020, 28, 25000.	3.4	2
75	Extremely Efficient Light-Exciton Interaction in a Monolayer WS2 van der Waals Heterostructure Cavity. , 2020, , .		0
76	Highly miniaturized endoscopic spatial confocal point distance sensor. Optical Engineering, 2020, 59, 1.	1.0	4
77	Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment. Optics Express, 2020, 28, 33614.	3.4	6
78	In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas. Nano Letters, 2019, 19, 1-7.	9.1	45
79	Adaptive Method for Quantitative Estimation of Glucose and Fructose Concentrations in Aqueous Solutions Based on Infrared Nanoantenna Optics. Sensors, 2019, 19, 3053.	3.8	8
80	Electrochemistry on Inverse Copper Nanoantennas: Active Plasmonic Devices with Extraordinarily Large Resonance Shift. ACS Photonics, 2019, 6, 1863-1868.	6.6	26
81	Chiral Scatterometry on Chemically Synthesized Single Plasmonic Nanoparticles. ACS Nano, 2019, 13, 8659-8668.	14.6	69
82	Vibrational Sensing Using Infrared Nanoantennas: Toward the Noninvasive Quantitation of Physiological Levels of Glucose and Fructose. ACS Sensors, 2019, 4, 1973-1979.	7.8	45
83	Nonlinear Spectroscopy on the Plasmonic Analog of Electromagnetically Induced Absorption: Revealing Minute Structural Asymmetries. ACS Photonics, 2019, 6, 2850-2859.	6.6	8
84	Pushing Down the Limit: In Vitro Detection of a Polypeptide Monolayer on a Single Infrared Resonant Nanoantenna. ACS Photonics, 2019, 6, 2636-2642.	6.6	20
85	Innentitelbild: Selective Autonomous Molecular Transport and Collection by Hydrogelâ€Embedded Supramolecular Chemical Gradients (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18046-18046.	2.0	0
86	Electron-Driven Photon Sources for Spectral Interferometry using Electron Microscopes. , 2019, , .		0
87	Selective Autonomous Molecular Transport and Collection by Hydrogelâ€Embedded Supramolecular Chemical Gradients. Angewandte Chemie, 2019, 131, 18333-18338.	2.0	6
88	Selective Autonomous Molecular Transport and Collection by Hydrogelâ€Embedded Supramolecular Chemical Gradients. Angewandte Chemie - International Edition, 2019, 58, 18165-18170.	13.8	9
89	Interaction of orbital angular momentum light with Rydberg excitons: Modifying dipole selection rules. Physical Review B, 2019, 100, .	3.2	25
90	Resonant Plasmonic Nanoslits Enable in Vitro Observation of Single-Monolayer Collagen-Peptide Dynamics. ACS Sensors, 2019, 4, 1966-1972.	7.8	16

#	Article	IF	CITATIONS
91	Stimulated Raman Scattering Microscopy with an All-Optical Modulator. Physical Review Applied, 2019, 11, .	3.8	4
92	Spatiotemporal Analysis of an Efficient Fresnel Grating Coupler for Focusing Surface Plasmon Polaritons. ACS Photonics, 2019, 6, 600-604.	6.6	13
93	Merging transformation optics with electron-driven photon sources. Nature Communications, 2019, 10, 599.	12.8	31
94	Nonlinear Born-Kuhn Analog for Chiral Plasmonics. ACS Photonics, 2019, 6, 3306-3314.	6.6	25
95	Utilizing niobium plasmonic perfect absorbers for tunable near- and mid-IR photodetection. Optics Express, 2019, 27, 25012.	3.4	16
96	3D printed stacked diffractive microlenses. Optics Express, 2019, 27, 35621.	3.4	40
97	Coherently broadened, high-repetition-rate laser for stimulated Raman scattering–spectroscopic optical coherence tomography. Optics Letters, 2019, 44, 291.	3.3	4
98	Tunable green lasing from circular grating distributed feedback based on CH ₃ NH ₃ PbBr ₃ perovskite. Optical Materials Express, 2019, 9, 2006.	3.0	16
99	Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Optical Materials Express, 2019, 9, 4564.	3.0	110
100	Concept for a highly miniaturized endoscopic point distance sensor., 2019,,.		0
101	Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas. Scientific Reports, 2018, 8, 3415.	3.3	15
102	Mathematical Modeling of a Plasmonic Palladium-Based Hydrogen Sensor. IEEE Sensors Journal, 2018, 18, 1946-1959.	4.7	10
103	Comprehensive Study of Plasmonic Materials in the Visible and Near-Infrared: Linear, Refractory, and Nonlinear Optical Properties. ACS Photonics, 2018, 5, 1058-1067.	6.6	56
104	Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennasâ^'Utilization of Optimal Spectral Detuning of Fano Resonances. ACS Sensors, 2018, 3, 960-966.	7.8	47
105	Wavelength-Dependent Third-Harmonic Generation in Plasmonic Gold Nanoantennas: Quantitative Determination of the d-Band Influence. ACS Photonics, 2018, 5, 1863-1870.	6.6	16
106	Nonreciprocal hybrid magnetoplasmonics. Reports on Progress in Physics, 2018, 81, 116401.	20.1	56
107	Nanoscale Hydrogenography on Single Magnesium Nanoparticles. Nano Letters, 2018, 18, 4293-4302.	9.1	35
108	Temperature dependent two-photon photoluminescence of CH ₃ NH ₃ PbBr ₃ : structural phase and exciton to free carrier transition. Optical Materials Express, 2018, 8, 511.	3.0	26

#	Article	IF	Citations
109	Line-current model for deriving the wavelength scaling of linear and nonlinear optical properties of thin elongated metallic rod antennas. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1482.	2.1	4
110	Ultranarrow Second-Harmonic Resonances in Hybrid Plasmon-Fiber Cavities. Nano Letters, 2018, 18, 5576-5582.	9.1	25
111	Single Plasmonic Oligomer Chiral Spectroscopy. Advanced Optical Materials, 2018, 6, 1800087.	7.3	29
112	Comment on "Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers― ACS Photonics, 2018, 5, 2533-2534.	6.6	4
113	Niobium as Alternative Material for Refractory and Active Plasmonics. ACS Photonics, 2018, 5, 3298-3304.	6.6	27
114	Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics. Optics Letters, 2018, 43, 5283.	3.3	24
115	Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Optics Letters, 2018, 43, 5837.	3.3	38
116	Compact see-through AR system using buried imaging fiber bundles. , 2018, , .		0
117	Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Scientific Reports, 2017, 7, 39916.	3.3	57
118	Analytic Optimization of Near-Field Optical Chirality Enhancement. ACS Photonics, 2017, 4, 396-406.	6.6	39
119	Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160065.	3.4	5
120	3D-printed eagle eye: Compound microlens system for foveated imaging. Science Advances, 2017, 3, e1602655.	10.3	227
121	Spectroscopy of Graphene at the Saddle Point. , 2017, , 325-347.		0
122	Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas. Nano Letters, 2017, 17, 1931-1937.	9.1	34
123	Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging. ACS Sensors, 2017, 2, 655-662.	7.8	19
124	3D printed complex microoptics: A new paradigm in optics manufacturing (Conference Presentation). , 2017, , .		0
125	Chiral plasmonics. Science Advances, 2017, 3, e1602735.	10.3	583
126	Hybrid Organic-Plasmonic Nanoantennas with Enhanced Third-Harmonic Generation. ACS Omega, 2017, 2, 2577-2582.	3.5	9

#	Article	IF	Citations
127	Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source. ACS Photonics, 2017, 4, 1327-1332.	6.6	63
128	Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. Chemical Reviews, 2017, 117, 5110-5145.	47.7	457
129	Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science, 2017, 355, 1187-1191.	12.6	217
130	Wavelength Scaling in Antenna-Enhanced Infrared Spectroscopy: Toward the Far-IR and THz Region. ACS Photonics, 2017, 4, 45-51.	6.6	28
131	Refractive Index Estimation from Spectral Measurements of a Plasmonic Glucose Sensor and Wavelength Selection * *The project was funded by Baden-Württemberg Stiftung gGmbH. The authors would also like to thank MWK BW, ERC COMPLEX-PLAS and AvH Stiftung IFAC-PapersOnLine, 2017, 50, 4406-4411.	0.9	1
132	Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields. Nano Letters, 2017, 17, 6569-6574.	9.1	54
133	Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface. Science Advances, 2017, 3, e1700721.	10.3	77
134	Refractory Plasmonics without Refractory Materials. Nano Letters, 2017, 17, 6402-6408.	9.1	52
135	Subfemtosecond and Nanometer Plasmon Dynamics with Photoelectron Microscopy: Theory and Efficient Simulations. ACS Photonics, 2017, 4, 2461-2469.	6.6	22
136	Analytical normalization of resonant states in photonic crystal slabs and periodic arrays of nanoantennas at oblique incidence. Physical Review B, 2017, 96, .	3.2	40
137	Plasmonic Analog of Electromagnetically Induced Absorption Leads to Giant Thin Film Faraday Rotation of $14 \hat{A}^\circ$. Physical Review X, 2017, 7, .	8.9	33
138	Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light: Science and Applications, 2017, 6, e17016-e17016.	16.6	313
139	Unbiased All-Optical Random-Number Generator. Physical Review X, 2017, 7, .	8.9	13
140	Modeling of pressure-composition isotherms and diffusion dynamics of a plasmonic palladium sensor for hydrogen detection. , 2017, , .		1
141	Single mode fiber based delivery of OAM light by 3D direct laser writing. Optics Express, 2017, 25, 19672.	3.4	66
142	Refractive index measurements of photo-resists for three-dimensional direct laser writing. Optical Materials Express, 2017, 7, 2293.	3.0	118
143	Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 133 to 8 µm. Optics Express, 2017, 25, 32355.	3.4	14
144	Integrated approach to realize top hat focal field distributions. , 2017, , .		0

#	Article	IF	Citations
145	High repetition rate mid-infrared supercontinuum generation from 13 to 53  Î⅓m in robust step-index tellurite fibers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 601.	2.1	55
146	Complex Micro-Optics by Femtosecond Direct Laser Writing., 2017,,.		0
147	Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas. Beilstein Journal of Nanotechnology, 2016, 7, 111-120.	2.8	30
148	Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: Gain and noise dynamics. Optics Express, 2016, 24, 19558.	3.4	15
149	Low drift cw-seeded high-repetition-rate optical parametric amplifier for fingerprint coherent Raman spectroscopy. Optics Express, 2016, 24, 22296.	3.4	2
150	Simple ps microchip Nd:YVO4laser with 3.3-ps pulses at 0.2 to 1.4ÂMHz and single-stage amplification to the microjoule level. Optical Engineering, 2016, 55, 066126.	1.0	1
151	Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths. APL Photonics, 2016, 1 , .	5.7	24
152	Short-range surface plasmonics and its (sub-)femtosecond dynamics. , 2016, , .		0
153	Simple ps microchip Nd:YVO4laser with 3.3 ps pulses at 0.2 - 1.4 MHz and single-stage amplification to the microjoule level. , 2016 , , .		2
154	Nonlinear Plasmonic Sensing. Nano Letters, 2016, 16, 3155-3159.	9.1	150
155	The optimal antenna for nonlinear spectroscopy of weakly and strongly scattering nanoobjects. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	4
156	Diffractive Spectral-Splitting Optical Element Designed by Adjoint-Based Electromagnetic Optimization and Fabricated by Femtosecond 3D Direct Laser Writing. ACS Photonics, 2016, 3, 886-894.	6.6	63
157	Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration. ACS Photonics, 2016, 3, 1076-1084.	6.6	64
158	Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy. Light: Science and Applications, 2016, 5, e16149-e16149.	16.6	27
159	Ultrafast Nonlinear Plasmonic Spectroscopy: From Dipole Nanoantennas to Complex Hybrid Plasmonic Structures. ACS Photonics, 2016, 3, 1336-1350.	6.6	38
160	Lorentz Nonreciprocal Model for Hybrid Magnetoplasmonics. Physical Review Letters, 2016, 117, 063901.	7.8	18
161	Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Letters, 2016, 16, 5708-5713.	9.1	115
162	Das kleinste Endoskop der Welt per 3D-Druck. Physik in Unserer Zeit, 2016, 47, 214-215.	0.0	0

#	Article	IF	Citations
163	Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography. ACS Sensors, 2016, 1, 1148-1154.	7.8	64
164	Correction to Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics, 2016, 3, 2000-2002.	6.6	2
165	Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing. Optics Letters, 2016, 41, 3029.	3.3	52
166	From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing. Physical Review Letters, 2016, 116, 237401.	7.8	73
167	Laser spectroscopy with tunable ultrafast optical parametric light sources. , 2016, , .		0
168	Design, simulation and 3D printing of complex micro-optics for imaging. , 2016, , .		3
169	Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications, 2016, 7, 11763.	12.8	248
170	Hydrogen-regulated chiral nanoplasmonics. Proceedings of SPIE, 2016, , .	0.8	1
171	Direct glimpse into the spatiotemporal dynamics of plasmonic vortices. , 2016, , .		0
172	Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	14
173	Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10, 554-560.	31.4	641
174	Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica, 2016, 3, 448.	9.3	94
175	Hydrogen-Regulated Chiral Nanoplasmonics. Nano Letters, 2016, 16, 1462-1466.	9.1	94
176	Imaging and Steering Unidirectional Emission from Nanoantenna Array Metasurfaces. ACS Photonics, 2016, 3, 286-292.	6.6	30
177	Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nature Materials, 2016, 15, 311-317.	27.5	170
178	High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. , 2016, , .		0
179	The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy. ACS Photonics, 2016, 3, 578-583.	6.6	172
180	Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	16

#	Article	IF	CITATIONS
181	Ultra-stable high average power femtosecond laser system tunable from 133 to 20  î¼m. Optics Letters, 2016, 41, 4863.	3.3	60
182	Chirality-Sensitive Ultrafast Spectroscopy. , 2016, , .		1
183	Stimulated Raman Scattering Microscopy without EOM: Nonlinear All-Optical Modulator by Period Multiplication. , 2016, , .		0
184	Solitonic supercontinuum of fs mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths. , 2016, , .		0
185	Nonlinear Refractory Plasmonics with TiN Nanoantennas. , 2016, , .		O
186	Optical angular momentum dynamics - In the eyes of the beholder. , 2016, , .		0
187	Ultranarrowband cw injection-seeded femtosecond OPG for superior pulse-to-pulse stability and output power. , 2016, , .		0
188	Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited]. Optical Materials Express, 2015, 5, 2625.	3.0	60
189	Retardation-induced phase singularities in coupled plasmonic oscillators. Physical Review B, 2015, 91, .	3.2	14
190	A Switchable Midâ€Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability. Advanced Materials, 2015, 27, 4597-4603.	21.0	487
191	Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors [Invited]. Optical Materials Express, 2015, 5, 2525.	3.0	31
192	Active Chiral Plasmonics. Nano Letters, 2015, 15, 4255-4260.	9.1	271
193	Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement. ACS Photonics, 2015, 2, 779-786.	6.6	113
194	Fabrication of plasmonic nanoantennas by femtosecond direct laser writing lithography - effects of near field coupling on SEIRA enhancement. , 2015 , , .		0
195	Discrete wavelength selection for the optical readout of a metamaterial biosensing system for glucose concentration estimation via a support vector regression model., 2015, 2015, 6421-4.		1
196	Repetitive Holeâ€Mask Colloidal Lithography for the Fabrication of Largeâ€Area Lowâ€Cost Plasmonic Multishape Singleâ€Layer Metasurfaces. Advanced Optical Materials, 2015, 3, 680-686.	7.3	19
197	Largeâ€Area Lowâ€Cost Tunable Plasmonic Perfect Absorber in the Near Infrared by Colloidal Etching Lithography. Advanced Optical Materials, 2015, 3, 398-403.	7.3	77
198	Plasmon–Polaron Coupling in Conjugated Polymer on Infrared Nanoantennas. Nano Letters, 2015, 15, 5382-5387.	9.1	10

#	Article	IF	CITATIONS
199	Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength. Nano Letters, 2015, 15, 3917-3922.	9.1	122
200	Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing. ACS Photonics, 2015, 2, 475-480.	6.6	85
201	Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing. Nano Letters, 2015, 15, 3439-3444.	9.1	92
202	High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP_2. Optics Letters, 2015, 40, 1398.	3.3	51
203	High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. Optics Letters, 2015, 40, 2668.	3.3	65
204	Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 12–24 Î⅓m range. Optics Express, 2015, 23, 8281.	3.4	57
205	Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz. Optics Express, 2015, 23, 23960.	3.4	28
206	Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 $\hat{l}\frac{1}{4}$ m diameter. Optics Express, 2015, 23, 11105.	3.4	36
207	Compact, low-noise, all-solid-state laser system for stimulated Raman scattering microscopy. Optics Letters, 2015, 40, 593.	3.3	15
208	Plasmonic Absorbers: A Switchable Midâ€Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability (Adv. Mater. 31/2015). Advanced Materials, 2015, 27, 4526-4526.	21.0	7
209	Interaction Effects between Magnetic and Chiral Building Blocks: A New Route for Tunable Magneto-chiral Plasmonic Structures. ACS Photonics, 2015, 2, 1272-1277.	6.6	41
210	Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths. Light: Science and Applications, 2015, 4, e284-e284.	16.6	84
211	Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range. Nano Letters, 2015, 15, 7949-7955.	9.1	162
212	Nonlinear Plasmon Optics. Nano-optics and Nanophotonics, 2015, , 155-181.	0.2	2
213	Plasmonic Gas and Chemical Sensing. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 239-272.	0.2	2
214	High-average-power, mid-infrared femtosecond optical parametric oscillator at 7 ${\rm \hat{A}}\mu m$ based on CdSiP2. , 2015, , .		0
215	Tunable all-optical modulation by period multiplication in a synchronously-pumped optical parametric oscillator., 2015,,.		O
216	Highly compact, low-noise all-solid-state laser system for stimulated Raman scattering microscopy. , 2015, , .		0

#	Article	IF	CITATIONS
217	Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials. Beilstein Journal of Nanotechnology, 2014, 5, 577-586.	2.8	22
218	Ultrabroadband chirped pulse second-harmonic spectroscopy: measuring the frequency-dependent second-order response of different metal films. Optics Letters, 2014, 39, 5293.	3.3	10
219	Plasmonic gas and glucose sensing using resonant nanoantennas. , 2014, , .		O
220	Watt-level optical parametric amplifier at 42 MHz tunable from 135 to 45 \hat{l} /4m coherently seeded with solitons. Optics Express, 2014, 22, 9567.	3.4	27
221	Plasmonic Antennas: Largeâ€Area Antennaâ€Assisted SEIRA Substrates by Laser Interference Lithography (Advanced Optical Materials 11/2014). Advanced Optical Materials, 2014, 2, 1049-1049.	7.3	0
222	Dynamic modeling of the hydrogel molecular filter in a metamaterial biosensing system for glucose concentration estimation., 2014, 2014, 2081-4.		2
223	DNA-assembled bimetallic plasmonic nanosensors. Light: Science and Applications, 2014, 3, e226-e226.	16.6	80
224	26ps pulses from a passively Q-switched microchip laser. , 2014, , .		2
225	Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response. Applied Physics B: Lasers and Optics, 2014, 117, 803-816.	2.2	36
226	Doubling the Efficiency of Third Harmonic Generation by Positioning ITO Nanocrystals into the Hot-Spot of Plasmonic Gap-Antennas. Nano Letters, 2014, 14, 2867-2872.	9.1	155
227	Sub-20-ps pulses from a passively Q-switched microchip laser at 1  MHz repetition rate. Optics Letters, 2014, 39, 2940.	3.3	38
228	Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics, 2014, 1, 530-537.	6.6	179
229	Eleven Nanometer Alignment Precision of a Plasmonic Nanoantenna with a Self-Assembled GaAs Quantum Dot. Nano Letters, 2014, 14, 197-201.	9.1	40
230	Optical properties of aperiodic metallic photonic crystal structures: quasicrystals and disorder. Journal of Optics (United Kingdom), 2014, 16, 114001.	2.2	10
231	High-power femtosecond mid-IR sources for s-SNOM applications. Journal of Optics (United Kingdom), 2014, 16, 094003.	2.2	24
232	Yttrium Hydride Nanoantennas for Active Plasmonics. Nano Letters, 2014, 14, 1140-1147.	9.1	86
233	Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation. ACS Nano, 2014, 8, 4969-4974.	14.6	47
234	Combining cw-seeding with highly nonlinear fibers in a broadly tunable femtosecond optical parametric amplifier at 42  MHz. Optics Letters, 2014, 39, 4851.	3.3	6

#	Article	IF	Citations
235	Semiclassical Plexcitonics: Simple Approach for Designing Plexcitonic Nanostructures. Journal of Physical Chemistry C, 2014, 118, 23963-23969.	3.1	28
236	Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects. ACS Nano, 2014, 8, 10885-10892.	14.6	103
237	Spatial Extent of Plasmonic Enhancement of Vibrational Signals in the Infrared. ACS Nano, 2014, 8, 6250-6258.	14.6	68
238	Imaging and steering an optical wireless nanoantenna link. Nature Communications, 2014, 5, 4354.	12.8	96
239	Largeâ€Area Antennaâ€Assisted SEIRA Substrates by Laser Interference Lithography. Advanced Optical Materials, 2014, 2, 1050-1056.	7.3	49
240	Third Harmonic Mechanism in Complex Plasmonic Fano Structures. ACS Photonics, 2014, 1, 471-476.	6.6	106
241	Plasmonic gas and chemical sensing. Nanophotonics, 2014, 3, 157-180.	6.0	98
242	Yttrium hydride nanoantennas for active plasmonics. , 2014, , .		53
243	Highly compact, low-noise all-solid state laser system for stimulated Raman scattering microscopy. , 2014, , .		0
244	Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser and Photonics Reviews, 2013, 7, 141-169.	8.7	145
245	Au Nanotip as Luminescent Near-Field Probe. Nano Letters, 2013, 13, 3566-3570.	9.1	21
246	Tailoring Magnetic Dipole Emission with Plasmonic Split-Ring Resonators. Physical Review Letters, 2013, 111, 026803.	7.8	86
247	Stable MHz-repetition-rate passively Q-switched microchip laser frequency doubled by MgO:PPLN. Applied Physics B: Lasers and Optics, 2013, 112, 231-239.	2.2	11
248	Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nature Communications, 2013, 4, 2237.	12.8	103
249	Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Letters, 2013, 13, 6238-6243.	9.1	336
250	Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nature Communications, 2013, 4, 1599.	12.8	353
251	Plasmonic Smart Dust for Probing Local Chemical Reactions. Nano Letters, 2013, 13, 1816-1821.	9.1	104
252	Plasmonic Diastereomers: Adding up Chiral Centers. Nano Letters, 2013, 13, 600-606.	9.1	88

#	Article	IF	CITATIONS
253	Large-Area 3D Chiral Plasmonic Structures. ACS Nano, 2013, 7, 6321-6329.	14.6	256
254	Ultrafast Spectroscopy of Quantum Confined States in a Single CdSe Nanowire. Nano Letters, 2013, 13, 1706-1710.	9.1	15
255	Babinet to the Half: Coupling of Solid and Inverse Plasmonic Structures. Nano Letters, 2013, 13, 4428-4433.	9.1	92
256	Noninvasive optical glucose monitoring at physiological levels using a functionalized plasmonic sensor. , $2013, , .$		1
257	Waveguide-Plasmon Polaritons Enhance Transverse Magneto-Optical Kerr Effect. Physical Review X, 2013, 3, .	8.9	75
258	Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures. Optics Express, 2013, 21, A363.	3.4	41
259	Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications. Optical Materials Express, 2013, 3, 194.	3.0	43
260	Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 417 MHz Yb:KGW oscillator. Optics Express, 2013, 21, 11516.	3.4	30
261	Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3123.	2.1	71
262	Optical phased array nanoantenna link. , 2013, , .		0
263	Direct mapping of plasmonic near-fields using infrared far-field vibrational spectroscopy. , 2013, , .		0
264	Sub 10-nm accuracy in positioning plasmonic nanostructures on self-assembled GaAs quantum dots. , 2013, , .		0
265	Broadly-tunable near- and mid-IR source by direct pumping of an OPA with a 42 MHz femtosecond multi-Watt Yb:KGW oscillator. , 2013 , , .		0
266	Nanoantenna-enhanced mid-IR vibration spectroscopy with single molecular layer sensitivity., 2013,,.		0
267	High-power high-repetition-rate mid-IR femtosecond laser sources for FTIR spectroscopy applications. , 2013, , .		0
268	Ultrafast dynamics of quantum confined carriers in a single CdSe nanowire. , 2013, , .		0
269	Tunable ultrafast nonlinear optofluidic coupler. EPJ Web of Conferences, 2013, 41, 12010.	0.3	1
270	Plasmonic oligomers in cylindrical vector light beams. Beilstein Journal of Nanotechnology, 2013, 4, 57-65.	2.8	16

#	Article	IF	CITATIONS
271	Plasmonically Enhanced Transverse Magneto-Optical Kerr Effect. , 2013, , .		O
272	Third harmonic spectroscopy of complex plasmonic Fano structures. , 2013, , .		0
273	Quantitative mapping of plasmonic near-fields using infrared far-field vibrational spectroscopy. , 2013, , .		0
274	Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Optical Materials Express, 2012, 2, 1588.	3.0	505
275	Tunable ultrafast nonlinear optofluidic coupler. Optics Letters, 2012, 37, 1058.	3.3	39
276	2D metallic photonic quasicrystals. , 2012, , .		0
277	Modifying the emission of electric and magnetic dipoles with plasmonic split-ring resonators. , 2012, , .		0
278	Design of plasmonic nanostructures for chiral sensing. , 2012, , .		3
279	Milliwatt-level mid-infrared (105–165 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator. Optics Letters, 2012, 37, 3513.	3.3	44
280	Spectral shifts in optical nanoantenna-enhanced hydrogen sensors. Optical Materials Express, 2012, 2, 111.	3.0	61
281	Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity. Optics Letters, 2012, 37, 2454.	3.3	19
282	Polarization scramblers with plasmonic meander-type metamaterials. Optics Express, 2012, 20, 22700.	3.4	14
283	Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Optics Letters, 2012, 37, 4741.	3.3	69
284	Formation of chiral fields in a symmetric environment. Optics Express, 2012, 20, 26326.	3.4	149
285	Design and Fabrication of Helical Structures via Proximity-field Nano-Patterning (PnP) for Application as Chiral Metamaterials. , 2012, , .		O
286	Polarization scrambling with metallic meander structures for space applications. Proceedings of SPIE, 2012, , .	0.8	0
287	Metal–dielectric photonic crystal superlattice: 1D and 2D models and empty lattice approximation. Physica B: Condensed Matter, 2012, 407, 4037-4042.	2.7	16
288	Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities. Proceedings of SPIE, 2012, , .	0.8	1

#	Article	IF	CITATIONS
289	Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures. Physical Review X, 2012, 2, .	8.9	227
290	Emission properties of an oscillating point dipole from a gold Yagi-Uda nanoantenna array. Physical Review B, 2012, 85, .	3.2	31
291	2D quasiperiodic plasmonic crystals. Scientific Reports, 2012, 2, 681.	3.3	36
292	Octave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling. Nature Communications, 2012, 3, 691.	12.8	25
293	Analytical Model of the Three-Dimensional Plasmonic Ruler. ACS Nano, 2012, 6, 1291-1298.	14.6	43
294	Quantitative Modeling of the Third Harmonic Emission Spectrum of Plasmonic Nanoantennas. Nano Letters, 2012, 12, 3778-3782.	9.1	154
295	Optical Properties of Chiral Three-Dimensional Plasmonic Oligomers at the Onset of Charge-Transfer Plasmons. ACS Nano, 2012, 6, 10355-10365.	14.6	103
296	Three-Dimensional Chiral Plasmonic Oligomers. Nano Letters, 2012, 12, 2542-2547.	9.1	342
297	Plasmon hybridization in stacked metallic nanocups. Optical Materials Express, 2012, 2, 1384.	3.0	13
298	Hole-Mask Colloidal Nanolithography for Large-Area Low-Cost Metamaterials and Antenna-Assisted Surface-Enhanced Infrared Absorption Substrates. ACS Nano, 2012, 6, 979-985.	14.6	148
299	Transient Reflection: A Versatile Technique for Ultrafast Spectroscopy of a Single Quantum Dot in Complex Environments. Nano Letters, 2012, 12, 453-457.	9.1	12
300	Diamond nanophotonics. Beilstein Journal of Nanotechnology, 2012, 3, 895-908.	2.8	31
301	Resonant multimeanderâ€metasurfaces: A model system for superlenses and communication devices. Physica Status Solidi (B): Basic Research, 2012, 249, 1415-1421.	1.5	4
302	Ultrafast coherent spectroscopy of a single selfâ€assembled quantum dot. Physica Status Solidi (B): Basic Research, 2012, 249, 721-730.	1.5	4
303	Plasmonic antennas, positioning, and coupling of individual quantum systems. Physica Status Solidi (B): Basic Research, 2012, 249, 666-677.	1.5	15
304	Transient absorption spectroscopy of a single lateral InGaAs quantum dot molecule. Physica Status Solidi (B): Basic Research, 2012, 249, 731-736.	1.5	2
305	Positioning plasmonic nanostructures on single quantum emitters. Physica Status Solidi (B): Basic Research, 2012, 249, 678-686.	1.5	22
306	Classical Analog of Electromagnetically Induced Absorption in Plasmonics. Nano Letters, 2012, 12, 1367-1371.	9.1	235

#	Article	IF	Citations
307	Largeâ€Area Lowâ€Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing. Advanced Materials, 2012, 24, OP247-52.	21.0	60
308	Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes. Applied Physics B: Lasers and Optics, 2012, 106, 521-527.	2.2	16
309	Milliwatt-level Mid-infrared Difference Frequency Generation with a Femtosecond Dual-signal-wavelength Optical Parametric Oscillator. , 2012, , .		0
310	Tailoring the photonic band splitting in metallodielectric photonic crystal superlattices. Physical Review B, 2011, 84, .	3.2	8
311	Excitation and Tuning of Higher-Order Fano Resonances in Plasmonic Oligomer Clusters. ACS Nano, 2011, 5, 8202-8211.	14.6	130
312	Mode coupling and interaction in a plasmonic microcavity with resonant mirrors. Physical Review B, 2011, 84, .	3.2	16
313	Near-Field Dynamics of Optical Yagi-Uda Nanoantennas. Nano Letters, 2011, 11, 2819-2824.	9.1	105
314	Plasmonic Oligomers: The Role of Individual Particles in Collective Behavior. ACS Nano, 2011, 5, 2042-2050.	14.6	255
315	Excitonic Fano Resonance in Free-Standing Graphene. Nano Letters, 2011, 11, 1379-1382.	9.1	117
316	Three-Dimensional Plasmon Rulers. Science, 2011, 332, 1407-1410.	12.6	522
317	Optical transmission through subwavelength hole arrays in ultrathin metal films. Physical Review B, 2011, 84, .	3.2	31
318	Large-Area High-Quality Plasmonic Oligomers Fabricated by Angle-Controlled Colloidal Nanolithography. ACS Nano, 2011, 5, 9009-9016.	14.6	60
319	Periodic Nanostructures: Spatial Dispersion Mimics Chirality. Physical Review Letters, 2011, 106, 185501.	7.8	56
320	Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing. Nano Letters, 2011, 11, 4366-4369.	9.1	385
321	Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 238.	1.5	50
322	Two-color femtosecond optical parametric oscillator with 17ÂW output pumped by a 74ÂW Yb:KGW laser. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1344.	2.1	19
323	Generalized retarded response of nonlinear media and its influence on soliton dynamics. Optics Express, 2011, 19, 2895.	3.4	28
324	Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications. Optics Express, 2011, 19, 3627.	3.4	19

#	Article	IF	Citations
325	Influence of the retarded response on an ultrafast nonlinear optofluidic fiber coupler. Optics Express, 2011, 19, 21673.	3.4	22
326	Coupling strength of complex plasmonic structures in the multiple dipole approximation. Optics Express, 2011, 19, 22156.	3.4	16
327	High-power widely tunable sub-20fs Gaussian laser pulses for ultrafast nonlinear spectroscopy. Optics Express, 2011, 19, 24354.	3.4	26
328	Strong coupling of localized and surface plasmons to microcavity modes. Optics Letters, 2011, 36, 2218.	3.3	50
329	3D optical Yagi–Uda nanoantenna array. Nature Communications, 2011, 2, 267.	12.8	292
330	Towards unraveling the mechanism of third harmonic generation in plasmonic nanoantennas. , 2011, , .		0
331	Octave-wide Photonic Band Gap in Three-Dimensional Plasmonic Bragg Structures. , 2011, , .		0
332	Rigorous modeling of meander-type metamaterials for sub-lambda imaging. Proceedings of SPIE, 2011, , .	0.8	2
333	Sub-wavelength imaging using stacks of metallic meander structures with different periodicities. , 2011, , .		2
334	Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10, 631-636.	27.5	863
335	Strong resonant mode coupling of Fabry–Perot and grating resonances in stacked two-layer systems. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 390-397.	2.0	17
336	Towards the Origin of the Nonlinear Response in Hybrid Plasmonic Systems. Physical Review Letters, 2011, 106, 133901.	7.8	99
337	Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nature Communications, $2011, 2, \ldots$	12.8	118
338	Acceleration of Parameter Studies in the Fourier Modal Method by Introducing Lateral Shift Matrices. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1625-1630.	0.4	0
339	From Near-Field to Far-Field Coupling in the Third Dimension: Retarded Interaction of Particle Plasmons. Nano Letters, 2011, 11, 4421-4424.	9.1	58
340	Compact and cost-effective scheme for THz generation via optical rectification in GaP and GaAs using novel fs laser oscillators. Applied Physics B: Lasers and Optics, 2011, 103, 45-50.	2.2	11
341	Nonlinear photonics with metallic nanostructures on top of dielectrics and waveguides. Applied Physics B: Lasers and Optics, 2011, 105, 51-65.	2,2	10
342	Investigation of the nonlinear optical properties of metamaterials by second harmonic generation. Applied Physics B: Lasers and Optics, 2011, 105, 149-162.	2.2	27

#	Article	IF	Citations
343	Ein Plasmonenlineal vermisst Proteine. Physik in Unserer Zeit, 2011, 42, 266-267.	0.0	O
344	Threeâ€Dimensional Bichiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver Plating. Advanced Materials, 2011, 23, 3018-3021.	21.0	182
345	Metamaterials for optical and photonic applications for space: preliminary results. Proceedings of SPIE, $2011, \ldots$	0.8	3
346	Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy. , 2011, , .		6
347	Towards 3D plasmon rulers. , 2011, , .		0
348	Compact and tunable sub-20 fs laser source for ultrafast nonlinear applications. , 2011, , .		0
349	Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single plasmonic nanodisc. , 2011, , .		0
350	From near-field to far-field: Radiative coupling of particle plasmon resonances in three-dimensional geometries. , 2011 , , .		0
351	Optical properties of two-dimensional quasicrystalline plasmonic arrays. Physical Review B, 2011, 84, .	3.2	17
352	Regression Methods for Ophthalmic Glucose Sensing Using Metamaterials. Journal of Electrical and Computer Engineering, 2011, 2011, 1-12.	0.9	7
353	1.5 W output two-color femtosecond optical parametric oscillator pumped by a 7.4 W femtosecond Yb:KGW laser. , 2011, , .		0
354	Enhancing the photoluminescence properties of single epitaxial gaas quantum dots using optical antennas. , $2011, \ldots$		0
355	From near-field to far-field: Radiative coupling of particle plasmon resonances in three-dimensional geometries. , $2011, , .$		0
356	Application of the Discontinuous Galerkin Time Domain Method to the Optics of Bi-Chiral Plasmonic Crystals., 2011,,.		0
357	Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single plasmonic nanodisc. , 2011, , .		0
358	1.5W Output Two-Color Femtosecond Optical Parametric Oscillator Pumped by a 7.4 W Femtosecond Yb:KGW Laser. , $2011,$, .		0
359	Plasmonic oligomers: the role of individual particles in collective behavior. , 2011, , .		0
360	Nanoantenna-enhanced gas sensing in a single tailored nanofocus. , 2011, , .		1

#	Article	IF	CITATIONS
361	Mode hybridization and interaction in a metallic meander Fabry-Pelrot cavity., 2010,,.		O
362	Resonant mode coupling for deriving optical resonances in stacked grating structures. , 2010, , .		0
363	Novel plasmonic sensor design using plasmon-induced transparency. , 2010, , .		0
364	Three-dimensional optical metamaterials and nanoantennas: Chirality, Coupling, and Sensing. , 2010, , .		0
365	All-Optical Control of the Ultrafast Dynamics of a Hybrid Plasmonic System. Physical Review Letters, 2010, 104, 113903.	7.8	64
366	Directing Light Emission from Quantum Dots. Science, 2010, 329, 910-911.	12.6	30
367	Fabrication of a fiber-based microcavity with spherical concave fiber tips. Applied Physics B: Lasers and Optics, 2010, 98, 707-710.	2.2	3
368	Coupling Effects in Optical Metamaterials. Angewandte Chemie - International Edition, 2010, 49, 9838-9852.	13.8	287
369	The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9, 707-715.	27.5	3,352
370	Plasmonic Sensor Based on Perfect Absorption. , 2010, , .		0
370 371	Plasmonic Sensor Based on Perfect Absorption., 2010,,. Optical hydrogen sensing with metallic photonic crystals and plasmonic metamaterials., 2010,,.		2
		3.2	
371	Optical hydrogen sensing with metallic photonic crystals and plasmonic metamaterials., 2010,,. Tailoring the ultrafast dynamics of the magnetic mode in magnetic photonic crystals. Physical Review	3.2	2
371 372	Optical hydrogen sensing with metallic photonic crystals and plasmonic metamaterials. , 2010, , . Tailoring the ultrafast dynamics of the magnetic mode in magnetic photonic crystals. Physical Review B, 2010, 81, .		12
371 372 373	Optical hydrogen sensing with metallic photonic crystals and plasmonic metamaterials., 2010, , . Tailoring the ultrafast dynamics of the magnetic mode in magnetic photonic crystals. Physical Review B, 2010, 81, . Infrared Perfect Absorber and Its Application As Plasmonic Sensor. Nano Letters, 2010, 10, 2342-2348.	9.1	2 12 2,513
371 372 373	Optical hydrogen sensing with metallic photonic crystals and plasmonic metamaterials., 2010, , . Tailoring the ultrafast dynamics of the magnetic mode in magnetic photonic crystals. Physical Review B, 2010, 81, . Infrared Perfect Absorber and Its Application As Plasmonic Sensor. Nano Letters, 2010, 10, 2342-2348. Lagrange model for the chiral optical properties of stereometamaterials. Physical Review B, 2010, 81, . Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing.	9.1	2 12 2,513 53
371 372 373 374	Optical hydrogen sensing with metallic photonic crystals and plasmonic metamaterials., 2010, , . Tailoring the ultrafast dynamics of the magnetic mode in magnetic photonic crystals. Physical Review B, 2010, 81, . Infrared Perfect Absorber and Its Application As Plasmonic Sensor. Nano Letters, 2010, 10, 2342-2348. Lagrange model for the chiral optical properties of stereometamaterials. Physical Review B, 2010, 81, . Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Letters, 2010, 10, 1103-1107. Cavity Plasmonics: Large Normal Mode Splitting of Electric and Magnetic Particle Plasmons Induced by	9.1 3.2 9.1	2 12 2,513 53

#	Article	IF	CITATIONS
379	Resonant mode coupling of optical resonances in stacked nanostructures. Optics Express, 2010, 18, 7569.	3.4	51
380	Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers. Optics Express, 2010, 18, 20151.	3.4	19
381	Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Optics Express, 2010, 18, 25232.	3.4	185
382	Fabrication method for microscopic vapor cells for alkali atoms. Optics Letters, 2010, 35, 1950.	3.3	47
383	Hydrogen sensor based on metallic photonic crystal slabs. Optics Letters, 2010, 35, 3150.	3.3	49
384	Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses. Optics Letters, 2010, 35, 3961.	3.3	20
385	Cavity-enhanced localized plasmon resonance sensing. Applied Physics Letters, 2010, 97, .	3.3	242
386	Transition from Isolated to Collective Modes in Plasmonic Oligomers. Nano Letters, 2010, 10, 2721-2726.	9.1	544
387	Enhancing the Optical Excitation Efficiency of a Single Self-Assembled Quantum Dot with a Plasmonic Nanoantenna. Nano Letters, 2010, 10, 4555-4558.	9.1	79
388	3D optical Yagi-Uda nanoantenna array. , 2010, , .		3
389			
	Microcavity Plasmonics., 2010, , .		0
390	Microcavity Plasmonics. , 2010, , . Selectively Filled Photonic Crystal Fibers. , 2010, , .		0
390 391			
	Selectively Filled Photonic Crystal Fibers. , 2010, , .		0
391	Selectively Filled Photonic Crystal Fibers. , 2010, , . Selectively Filled Photonic Crystal Fibers. , 2010, , . Compact and widely tunable sub-50 fs laser source with 30 mW to 300 mW output power at 44 MHz		0
391 392	Selectively Filled Photonic Crystal Fibers., 2010,,. Selectively Filled Photonic Crystal Fibers., 2010,,. Compact and widely tunable sub-50 fs laser source with 30 mW to 300 mW output power at 44 MHz repetition rate for nonlinear spectroscopy applications., 2010,,.		0 0
391 392 393	Selectively Filled Photonic Crystal Fibers., 2010,,. Selectively Filled Photonic Crystal Fibers., 2010,,. Compact and widely tunable sub-50 fs laser source with 30 mW to 300 mW output power at 44 MHz repetition rate for nonlinear spectroscopy applications., 2010,,. Giant splitting of localized electric and magnetic plasmon modes in a photonic microcavity., 2010,,.		0 0 0

#	Article	IF	Citations
397	Index-near-zero properties of metallic meander structures. , 2009, , .		O
398	Quasicrystalline Metamaterials. , 2009, , .		0
399	Ultrafast coherent control of plasmon polaritons on the nanoscale., 2009,,.		0
400	Tailoring polaritonic dephasing in magnetic photonic crystals. , 2009, , .		0
401	Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals. Physical Review B, 2009, 79, .	3.2	20
402	Three-dimensional metallic metamaterials: Coupling matters. , 2009, , .		0
403	Modelling of surface plasmon polaritons in a 2D superlattice. , 2009, , .		0
404	Coupling of self-assembled quantum dots to plasmonic nanoantennas. , 2009, , .		0
405	Glimpsing the Weak Magnetic Field of Light. Science, 2009, 326, 529-530.	12.6	34
406	Integration of a Rib Waveguide Distributed Feedback Structure into a Lightâ€Emitting Polymer Fieldâ€Effect Transistor. Advanced Functional Materials, 2009, 19, 1360-1370.	14.9	106
407	Femtosecond properties of photorefractive polymers. Applied Physics B: Lasers and Optics, 2009, 95, 31-35.	2.2	7
408	Femtosecond 5-W Yb:KGW slab laser oscillator pumped byÂaÂsingle broad-area diode and its application asÂsupercontinuum source. Applied Physics B: Lasers and Optics, 2009, 96, 5-10.	2.2	17
409	Periodic Largeâ€Area Metallic Splitâ€Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography. Small, 2009, 5, 400-406.	10.0	157
410	Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 2009, 8, 758-762.	27.5	1,651
411	Stereometamaterials. Nature Photonics, 2009, 3, 157-162.	31.4	643
412	Simultaneous Optimization of Light Gain and Charge Transport in Ambipolar Light-Emitting Polymer Field-Effect Transistors. Chemistry of Materials, 2009, 21, 4425-4433.	6.7	55
413	Optical properties of metallic meanders. Journal of the Optical Society of America B: Optical Physics, 2009, 26, B111.	2.1	30
414	Matched coordinates and adaptive spatial resolution in the Fourier modal method. Optics Express, 2009, 17, 8051.	3.4	115

#	Article	IF	Citations
415	Spiral-type terahertz antennas and the manifestation of the Mushiake principle. Optics Express, 2009, 17, 9971.	3.4	76
416	Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method. Journal of Optics, 2009, 11, 114019.	1.5	38
417	Plasmonic EIT at the Drude damping limit. , 2009, , .		2
418	Calculation of complex shapes in the Fourier modal method through the concept of coordinate transformations. , 2009, , .		1
419	Ultrafast Coherent Control of Nonlinear Optical Processes in Plasmonic Nanostructures., 2009,,.		0
420	Efficient And Simple High-Power Femtosecond Yb:KGW Slab-Laser Pumped By A Single Broad-Area Emitter Diode., 2009,,.		0
421	Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers. Applied Physics B: Lasers and Optics, 2008, 92, 159-163.	2.2	9
422	Electromagnetic induction in metamaterials. Applied Physics B: Lasers and Optics, 2008, 93, 107-110.	2.2	4
423	Plasmonic Building Blocks for Magnetic Molecules in Threeâ€Dimensional Optical Metamaterials. Advanced Materials, 2008, 20, 3859-3865.	21.0	152
424	Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules. Advanced Materials, 2008, 20, 4521-4525.	21.0	253
425	Three-dimensional photonic metamaterials at optical frequencies. Nature Materials, 2008, 7, 31-37.	27.5	836
426	Grating games. Nature Photonics, 2008, 2, 335-337.	31.4	2
427	Near-field–induced tunability of surface plasmon polaritons in composite metallic nanostructures. Journal of Microscopy, 2008, 229, 344-353.	1.8	53
428	Synthesis of transmission line models for metamaterial slabs at optical frequencies. Physical Review B, 2008, 78, .	3.2	34
429	Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials. Optics Letters, 2008, 33, 848.	3.3	78
430	Resonances in complementary metamaterials and nanoapertures. Optics Express, 2008, 16, 2080.	3.4	59
431	Thermal lensing in an end-pumped Yb:KGW slab laser with high power single emitter diodes. Optics Express, 2008, 16, 6041.	3.4	32
432	Optical resonances of bowtie slot antennas and their geometry and material dependence. Optics Express, 2008, 16, 7756.	3.4	137

#	Article	IF	Citations
433	Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling. Optics Express, 2008, 16, 21233.	3.4	51
434	Transition from thin-film to bulk properties of metamaterials. Physical Review B, 2008, 77, .	3.2	71
435	Stereometamaterials., 2008, , .		0
436	Nanoaperture based Metamaterials. , 2007, , TuB16.		0
437	Microfluidic photonic crystal double heterostructures. Applied Physics Letters, 2007, 91, .	3.3	65
438	Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles. Applied Physics Letters, 2007, 90, 133114.	3.3	35
439	Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices: Time- and frequency-resolved nonlinear autocorrelation measurements and simulations. Physical Review B, 2007, 76, .	3.2	13
440	Selectively filled hybrid ARROW fibers., 2007,,.		0
441	Microfluidic photonic crystal nanocavities., 2007,,.		0
442	Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime. Optics Express, 2007, 15, 2732.	3.4	33
443	The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach. Optics Express, 2007, 15, 8871.	3.4	64
444	Resonance hybridization in double split-ring resonator metamaterials. Optics Express, 2007, 15, 12095.	3.4	96
445	Correlation Effects in Disordered Metallic Photonic Crystal Slabs. Physical Review Letters, 2007, 98, 133902.	7.8	51
446	Babinet's principle for optical frequency metamaterials and nanoantennas. Physical Review B, 2007, 76,	3.2	182
447	Lorentz model for metamaterials: Optical frequency resonance circuits. Physical Review B, 2007, 75, .	3.2	43
448	Microfluidic cavities in photonic crystal waveguides. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
449	Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays. Applied Physics Letters, 2007, 91, .	3.3	42
450	Plasmon Hybridization in Stacked Cutâ€Wire Metamaterials. Advanced Materials, 2007, 19, 3628-3632.	21.0	207

#	Article	IF	CITATIONS
451	Optical properties of disordered metallic photonic crystal slabs. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3848-3861.	1.8	3
452	Negative permeability around 630 nm in nanofabricated vertical meander metamaterials. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3886-3900.	1.8	22
453	Longitudinal capacitance design for optical left-handed metamaterials. Physica Status Solidi (B): Basic Research, 2007, 244, 1243-1250.	1.5	6
454	Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region. Physica Status Solidi (B): Basic Research, 2007, 244, 1251-1255.	1.5	23
455	Thickness dependence of the optical properties of split-ring resonator metamaterials. Physica Status Solidi (B): Basic Research, 2007, 244, 1256-1261.	1.5	33
456	Conference Report: Metamaterials – optical elements for the 21st centuryDPG Summer School, Bad Honnef, Germany, 17–22 September 2006. Physica Status Solidi (B): Basic Research, 2007, 244, 1167-1169.	1.5	0
457	Polariton bandstructure of disordered metallic photonic crystal slabs. Physica Status Solidi (B): Basic Research, 2007, 244, 1262-1269.	1.5	10
458	Analysis of metamaterials using transmission line models. Applied Physics B: Lasers and Optics, 2007, 86, 425-429.	2.2	13
459	Metallic Photonic Crystals Based on Solution-Processible Gold Nanoparticles. Nano Letters, 2006, 6, 651-655.	9.1	126
460	Magnetic and electronic resonances for different metamaterial resonator geometries. , 2006, , .		0
461	Optical Properties of Planar Metallo-Dielectric Photonic Crystals. , 2006, , 85-108.		1
462	Influence of near-resonant self-phase modulation on pulse propagation in semiconductors. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1360.	2.1	7
463	Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14, 6800.	3.4	163
464	On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express, 2006, 14, 8827.	3.4	289
465	Compact portable 20 MHz solid-state femtosecond whitelight-laser. Optics Express, 2006, 14, 10913.	3.4	9
466	Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations. Physical Review B, 2006, 74, .	3.2	109
467	Generation of white light laser radiation in tapered fibers. , 2006, , .		0
468	Generation of white light laser radiation in tapered fibers. , 2006, 6190, 89.		1

#	Article	IF	CITATIONS
469	Disorder issues in metallic photonic crystals. Physica Status Solidi (B): Basic Research, 2006, 243, 2331-2343.	1.5	12
470	Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal. Physica Status Solidi (B): Basic Research, 2006, 243, 2344-2348.	1.5	31
471	Optical switching in metallic photonic crystal slabs with photoaddressable polymers. Applied Physics B: Lasers and Optics, 2006, 82, 543-547.	2.2	31
472	Chirp-controlled soliton fission in tapered optical fibers. Applied Physics B: Lasers and Optics, 2006, 83, 37-42.	2.2	16
473	Resonances of split-ring resonator metamaterials in the near infrared. Applied Physics B: Lasers and Optics, 2006, 84, 219-227.	2.2	161
474	Metallodielectric photonic crystal superlattices: Influence of periodic defects on transmission properties. Physical Review B, 2006, 73, .	3.2	30
475	Controlling the coupling between localized and delocalized surface plasmon modes in a metallic photonic crystal slab. , 2006, , .		0
476	Linear and nonlinear optical properties of strongly coupled metal nanoparticles. , 2006, , .		3
477	Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography. Microelectronic Engineering, 2005, 78-79, 442-447.	2.4	24
478	Waveguide Plasmon Polaritons in Metal–Dielectric Photonic Crystal Slabs. Physics of the Solid State, 2005, 47, 145.	0.6	10
479	Large-area metallic photonic crystal fabrication with interference lithography and dry etching. Applied Physics B: Lasers and Optics, 2005, 81, 271-275.	2.2	49
480	Waveguide-plasmon polaritons in photonic crystal slabs with metal nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 795-800.	0.8	18
481	Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source. Journal of Biomedical Optics, 2005, 10, 054009.	2.6	21
482	Temporal and Spatial Pulse Compression in a Nonlinear Defocusing Material. Springer Series in Chemical Physics, 2005, , 19-21.	0.2	1
483	Diode-pumped, ultrafast, multi-octave supercontinuum source at repetition rates between 500 kHz and 20 MHz using Yb:glass lasers and tapered fibers. Optics Express, 2005, 13, 1477.	3.4	16
484	Compact multi-Watt picosecond coherent white light sources using multiple-taper fibers. Optics Express, 2005, 13, 1734.	3.4	32
485	Phase Evolution of Solitonlike Optical Pulses during Excitonic Rabi Flopping in a Semiconductor. Physical Review Letters, 2005, 94, 057406.	7.8	17
486	Transition between different coherent light–matter interaction regimes analyzed by phase-resolved pulse propagation. Optics Letters, 2005, 30, 1384.	3.3	11

#	Article	IF	Citations
487	Phase-resolved nonlinear propagation: Transition between coherent light-matter interaction regimes. , 2005, , .		0
488	Tailoring the Ultrafast Dephasing of Quasiparticles in Metallic Photonic Crystals. Physical Review Letters, 2004, 93, 243901.	7.8	94
489	Linear and nonlinear pulse propagation in a multiple-quantum-well photonic crystal. Physical Review B, 2004, 70, .	3.2	26
490	Four-wave mixing based on cascaded second-order nonlinear processes in a femtosecond optical parametric oscillator operating near degeneracy. Applied Physics B: Lasers and Optics, 2004, 79, 441-447.	2.2	13
491	Optical properties of planar metallic photonic crystal structures: $\hat{a} \in f$ Experiment and theory. Physical Review B, 2004, 70, .	3.2	225
492	Group velocity dispersion of tapered fibers immersed in different liquids. Optics Express, 2004, 12, 1700.	3.4	45
493	Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber. Optics Express, 2004, 12, 5840.	3.4	31
494	Adiabatically driven electron dynamics in a resonant photonic band gap: Optical switching of a Bragg periodic semiconductor. Physical Review B, 2004, 70, .	3.2	26
495	Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy. Optics Letters, 2004, 29, 1727.	3.3	49
496	Intra- and extra-cavity spectral broadening and continuum generation at 1.5??m using compact low-energy femtosecond Cr:YAG laser. Applied Physics B: Lasers and Optics, 2003, 77, 197-204.	2.2	23
497	Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses. Applied Physics B: Lasers and Optics, 2003, 77, 245-251.	2.2	68
498	Pulse propagation in Bragg-resonant multiple quantum wells: from pulse breakup to compression. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1484-1487.	0.8	2
499	Plasmon polaritons in a metallic photonic crystal slab. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1393-1396.	0.8	5
500	Slow coherent polarization decay of waveguide-particle-plasmon-polaritons in metallic photonic crystal slabs. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1412-1416.	0.8	1
501	Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab. Physical Review Letters, 2003, 91, 183901.	7.8	534
502	Extremely slow coherent polarization decay of waveguide- plasmon-polaritons in metallic photonic crystal slabs., 2003,,.		0
503	Waveguide-plasmon polaritons in a 1D metallic photonic crystal slab. , 2003, , .		0
504	Coherent nonlinear pulse propagation on a free-exciton resonance in a semiconductor., 2003, , 1-22.		1

#	Article	IF	CITATIONS
505	Evidence for bandedge lasing in a two-dimensional photonic bandgap polymer laser. Applied Physics Letters, 2002, 80, 734-736.	3.3	41
506	Femtosecond near-IR optical parametric oscillator with efficient intracavity generation of visible light. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2479.	2.1	8
507	1-GHz-repetition-rate femtosecond optical parametric oscillator. Applied Physics Letters, 2002, 80, 1873-1875.	3.3	23
508	Two-Photon Pumped Lasing from a Two-Dimensional Photonic Bandgap Structure with Polymeric Gain Material. Advanced Materials, 2002, 14, 673-676.	21.0	62
509	Spectrally and temporally resolved measurements of white light continuum generated in tapered fibers. , 2002, , .		0
510	Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction. Physical Review Letters, 2001, 86, 4688-4691.	7.8	262
511	Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator. Optics Letters, 2001, 26, 2005.	3.3	17
512	Atomic dynamics in single and multi-photon double ionization: An experimental comparison. Optics Express, 2001, 8, 368.	3.4	15
513	Time-resolved stimulated emission in an α-sexithienyl thin film. Synthetic Metals, 2001, 116, 49-51.	3.9	0
514	Atomphysik: Wenn Licht Atome in St $\tilde{A}^{1}\!\!/\!\!$ cke rei \tilde{A} Ÿt: Elektronenkorrelationen in starken Feldern. Physik Journal, 2001, 57, 49-52.	0.1	3
515	Selective suppression of extinction within the plasmon resonance of gold nanoparticles. Applied Physics B: Lasers and Optics, 2001, 73, 311-316.	2.2	41
516	Separating different contributions to the shear force in near-field microscopy. Journal of Microscopy, 2001, 202, 176-181.	1.8	5
517	A Surface-Emitting Circular Grating Polymer Laser. Advanced Materials, 2001, 13, 1161-1164.	21.0	82
518	Towards the Origin of the Shear Force in Near-Field Microscopy. Japanese Journal of Applied Physics, 2001, 40, 813-818.	1.5	4
519	Coherent nonlinear pulse propagation on a free-exciton resonance in a semiconductor. Physical Review B, 2001, 64, .	3.2	43
520	Ultrafast spatio-temporal dynamics in semiconductors. , 2001, , .		0
521	Double Ionization in Strong Fields: Ion Momenta and Correlated Electron Momenta., 2001, , 15-23.		0
522	Nonlinear Polariton Pulse Propagation in Bulk Semiconductors. Physica Status Solidi (B): Basic Research, 2000, 221, 453-457.	1.5	9

#	Article	IF	CITATIONS
523	Observation of Phonon Resonances in the Optical Nonlinearity in an ?-Sexithienyl Thin Film. Physica Status Solidi (B): Basic Research, 2000, 221, 561-565.	1.5	0
524	Carrier Dynamics in Stacked InP/GaInP Quantum Dots. Physica Status Solidi (B): Basic Research, 2000, 221, 59-63.	1.5	4
525	Polarized Photoluminescence and Spectral Narrowing in an Oriented Polyfluorene Thin Film. ChemPhysChem, 2000, 1, 142-146.	2.1	15
526	Femtosecond differential transmission spectroscopy of α-sexithienyl thin film. Journal of Luminescence, 2000, 87-89, 736-738.	3.1	3
527	Correlated electron emission in multiphoton double ionization. Nature, 2000, 405, 658-661.	27.8	482
528	32 fs KTP optical parametric oscillator with chirped mirrors. , 2000, , .		0
529	Recoil-lon Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields. Physical Review Letters, 2000, 84, 443-446.	7.8	301
530	Sequential and nonsequential contributions to double ionization in strong laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L127-L133.	1.5	73
531	Pulse characteristics of an optical parametric oscillator pumped by sub-30-fs light pulses. Optics Letters, 2000, 25, 1055.	3.3	7
532	Femtosecond Differential Transmission Spectroscopy of \hat{l}_{\pm} -Sexithienyl Single Crystals at Low Temperature. Journal of Physical Chemistry B, 2000, 104, 12210-12214.	2.6	4
533	Femtosecond Differential Transmission Spectroscopy of α-Sexithienyl Thin Film at Low Temperature. Journal of Physical Chemistry B, 2000, 104, 6536-6540.	2.6	4
534	XFROGâ€"Cross-correlation Frequency-resolved Optical Gating. , 2000, , 313-322.		0
535	32 fs KTP Optical Parametric Oscillator with Chirped Mirrors. , 2000, , .		0
536	Imaging the Internal Structure of Recording Marks on an Optical Disc by Internal Reflection Scanning Near-Field Optical Microscopy. Japanese Journal of Applied Physics, 1999, 38, L1463-L1465.	1.5	2
537	Bandwidth enhancement of a shear-force-controlled distance regulation in near-field microscopy. Journal of Applied Physics, 1999, 86, 100-106.	2.5	8
538	Ultrafast nonlinear subwavelength solid immersion spectroscopy at T=8 K. Applied Physics Letters, 1999, 74, 1791-1793.	3.3	47
539	The dynamics of gain-narrowing in a ladder-type π-conjugated polymer. Chemical Physics Letters, 1999, 312, 376-384.	2.6	31
540	Two-photon fluorescence and femtosecond two-photon absorption studies of MeLPPP, a ladder-type poly(phenylene) with low intra-chain disorder. Chemical Physics Letters, 1999, 313, 755-762.	2.6	24

#	Article	IF	CITATIONS
541	Coherent propagation at high intensities on a free exciton resonance in a semiconductor: self-induced transmission. Superlattices and Microstructures, 1999, 26, 103-115.	3.1	5
542	Ultrafast nonlinear gain dynamics in semiconductor nanocrystals. Phase Transitions, 1999, 68, 59-94.	1.3	6
543	Conjugated polymer lasers: emission characteristics and gain mechanism. Physical Chemistry Chemical Physics, 1999, 1, 1795-1800.	2.8	11
544	Femtosecond Transient Absorption Spectroscopy in α-sexithienyl thin films. Synthetic Metals, 1999, 101, 555-556.	3.9	1
545	High-intensity pulse propagation in semiconductors: on-resonant self-induced transmission and effects in the continuum. Optics Express, 1999, 4, 121.	3.4	5
546	Amplitude and phase characterization of weak blue ultrashort pulses by downconversion. Optics Letters, 1999, 24, 569.	3.3	110
547	High-intensity laser pulse propagation in semiconductors. Advances in Solid State Physics, 1999, , 483-493.	0.8	0
548	XFROG ? A New Method for Amplitude and Phase Characterization of Weak Ultrashort Pulses. Physica Status Solidi (B): Basic Research, 1998, 206, 119-124.	1.5	302
549	Coherent High-Intensity Pulse Propagation on a Free Exciton Resonance in a Semiconductor. Physica Status Solidi (B): Basic Research, 1998, 206, 27-36.	1.5	6
550	A Tunable Blue-Green Laser from a Solid Conjugated Polymer. Physica Status Solidi (B): Basic Research, 1998, 206, 437-441.	1.5	6
551	Self-Induced Transmission on a Free Exciton Resonance in a Semiconductor. Physical Review Letters, 1998, 81, 4260-4263.	7.8	104
552	The optical gain mechanism in solid conjugated polymers. Applied Physics Letters, 1998, 72, 2933-2935.	3.3	46
553	Laser emission from a solid conjugated polymer: $\hat{a} \in f$ Gain, tunability, and coherence. Physical Review B, 1998, 57, R4218-R4221.	3.2	41
554	Theoretical study of solitonlike propagation of picosecond light pulses interacting with Wannier excitons. Physical Review E, 1998, 58, 1074-1080.	2.1	7
555	XFROG — A New Method for Amplitude and Phase Characterization of Weak Ultrashort Pulses. Physica Status Solidi (B): Basic Research, 1998, 206, 119-124.	1.5	6
556	Mirror-dispersion-compensated femtosecond optical parametric oscillator. Optics Communications, 1997, 141, 229-236.	2.1	14
557	Blue-green laser emission from a solid conjugated polymer. Solid State Communications, 1997, 104, 759-762.	1.9	15
558	Femtosecond optical gain in strongly confined quantum dots. Optics Letters, 1996, 21, 1043.	3.3	34

#	Article	IF	Citations
559	Dephasing in the gain region of Il–VI semiconductor nanocrystals. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1039.	2.1	17
560	Ultrafast energy relaxation in quantum dots. Physical Review B, 1996, 54, 17681-17690.	3.2	111
561	Ultrafast transient gain in type II multiple quantum wells. Applied Physics Letters, 1996, 68, 511-513.	3.3	4
562	Quantum dots in the strong confinement regime: a model system for gain in quasi zero-dimensional semiconductors. Chemical Physics, 1996, 210, 71-78.	1.9	6
563	Observation of the quantum confined ground state in InP quantum dots at 300 K. Applied Physics Letters, 1996, 68, 304-306.	3.3	33
564	Dephasing processes in II–VI quantum dots. Physica Status Solidi (B): Basic Research, 1995, 188, 221-227.	1.5	7
565	Photoluminescence decay dynamics in an InGaN/AlGaN/GaN doubleâ€heterostructure blueâ€lightâ€emitting diode. Applied Physics Letters, 1995, 67, 1515-1517.	3.3	39
566	Nonlinear Absorption and Gain in CdSe and CdSSe Quantum Dots. Materials Science Forum, 1995, 182-184, 93-98.	0.3	2
567	Gain in Strongly Confined Quantum Dots. Optics and Photonics News, 1995, 6, 34.	0.5	10
568	Synthesis and Characterization of InP, GaP, and GaInP2 Quantum Dots. The Journal of Physical Chemistry, 1995, 99, 7754-7759.	2.9	290
569	Carrier dephasing in the gain region of an inverted semiconductor. Physical Review B, 1994, 50, 17647-17650.	3.2	15
570	Wurtzite-type CdS and CdSe epitaxial layers I. Growth and characterization. Journal of Crystal Growth, 1994, 141, 68-74.	1.5	22
571	Wurtzite-type CdS and CdSe epitaxial layers II. Nonlinear optical properties. Journal of Crystal Growth, 1994, 141, 75-80.	1.5	2
572	Wurtzite CdSe grown by hot-wall epitaxy. Journal of Crystal Growth, 1993, 126, 505-509.	1.5	10
573	Spectral hole burning in the gain region of an inverted semiconductor. Physical Review B, 1993, 48, 15472-15475.	3.2	24
574	Quantumâ€Confined Electron–Hole Droplets. Physica Status Solidi (B): Basic Research, 1992, 173, 389-396.	1.5	7
575	Shift of the excitonic resonances by thermal strain and lattice mismatch in CdS thin epitaxial layers. Journal of Crystal Growth, 1992, 125, 384-387.	1.5	17
576	Cul microcrystallites embedded in a glass matrix. Semiconductor Science and Technology, 1991, 6, 401-404.	2.0	17

#	Article	IF	CITATIONS
577	Impurity-related photoluminescence from InGaN LED material. , 0, , .		O
578	Efficient visible light generation in a femtosecond PPLN optical parametric oscillator using an uneven poling duty cycle. , 0 , , .		0
579	1-GHz repetition-rate femtosecond optical parametric oscillator. , 0, , .		O
580	Coherence properties of white light continuum generation in tapered fibers in the fs and ps regime. , 0, , .		0
581	The influence of the disorder type on the optical properties of metallic photonic crystals. , 0, , .		O