Giuseppe Cruciani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440025/publications.pdf

Version: 2024-02-01

117453 155451 134 3,896 34 citations g-index h-index papers

139 139 139 4576 docs citations times ranked citing authors all docs

55

#	Article	IF	CITATIONS
1	Levulinic Acid Production: Comparative Assessment of Al-Rich Ordered Mesoporous Silica and Microporous Zeolite. Catalysis Letters, 2023, 153, 41-53.	1.4	5
2	Effects of SiO2-based scaffolds in TiO2 photocatalyzed CO2 reduction. Catalysis Today, 2022, 387, 54-60.	2.2	10
3	Ceramisation of hazardous elements: Benefits and pitfalls of the inertisation through silicate ceramics. Journal of Hazardous Materials, 2022, 423, 126851.	6.5	12
4	CuZSM-5@HMS composite as an efficient micro-mesoporous catalyst for conversion of sugars into levulinic acid. Catalysis Today, 2022, 390-391, 146-161.	2.2	8
5	Design of a Metal-Oxide Solid Solution for Sub-ppm H ₂ Detection. ACS Sensors, 2022, 7, 573-583.	4.0	13
6	Micro-meso structure NaP zeolite @TiO2 nanocomposite: eco-friendly photocatalyst for simultaneous removal COD and degradation of methylene blue under solar irradiation. Photochemical and Photobiological Sciences, 2022, 21, 1011-1029.	1.6	2
7	Selective Hydrogenation of 5â€Hydroxymethylfurfural to 1â€Hydroxyâ€2,5â€hexanedione by Biocharâ€Supportec Ru Catalysts. ChemSusChem, 2022, 15, .	d 3.6	7
8	The role of substrate materials on stabilization of CdO, 2CdO·CdSO4 and 2CdS·2CdO·CdSO4 from CdS powder film annealed in air. Materials Chemistry and Physics, 2021, 257, 123251.	2.0	1
9	Synthesis and characterization of micro-meso structure NaY zeolite in the presence of Nano-ZnO as a guest molecule. Journal of the Iranian Chemical Society, 2021, 18, 2873.	1.2	1
10	Investigation and prediction of sticking tendency, blocks formation and occasional melting of lime at HT (1300°C) by the overburning test method. Construction and Building Materials, 2021, 294, 123577.	3.2	4
11	Synthesis and Characterization of Manganese Dithiocarbamate Complexes: New Evidence of Dioxygen Activation. Molecules, 2021, 26, 5954.	1.7	7
12	Structural and Functional Behaviour of Ce-Doped Wide-Bandgap Semiconductors for Photo-Catalytic Applications. Catalysts, 2021, 11 , 1209 .	1.6	0
13	Phase evolution during reactive sintering by viscous flow: Disclosing the inner workings in porcelain stoneware firing. Journal of the European Ceramic Society, 2020, 40, 1738-1752.	2.8	22
14	Nanostructured SmFeO3 Gas Sensors: Investigation of the Gas Sensing Performance Reproducibility for Colorectal Cancer Screening. Sensors, 2020, 20, 5910.	2.1	24
15	Anomalous inclusion of chloride ions in ethylenediammonium lead iodide turns 1D non-perovskite into a 2D perovskite structure. CrystEngComm, 2020, 22, 8063-8071.	1.3	4
16	Simultaneous removal of Pb(II), Cd(II) and bacteria from aqueous solution using amino-functionalized Fe ₃ O ₄ /NaP zeolite nanocomposite. Environmental Technology (United) Tj ETQq0 0 0 rg	gBIT2 Overl	lo chs 10 Tf 50
17	Systematic study of TiO ₂ /ZnO mixed metal oxides for CO ₂ photoreduction. RSC Advances, 2019, 9, 21660-21666.	1.7	19
18	Nickel based catalysts for methane dry reforming: Effect of supports on catalytic activity and stability. International Journal of Hydrogen Energy, 2019, 44, 28065-28076.	3.8	51

#	Article	IF	CITATIONS
19	Manufacturing of Bent Silicon Crystals for Steering of Particle Beam at Ultra-High Energy Synchrotrons. Proceedings (mdpi), 2019, 26, 37.	0.2	O
20	Titanium Dioxide-Based Nanocomposites for Enhanced Gas-Phase Photodehydrogenation. Materials, 2019, 12, 3093.	1.3	6
21	Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling. Applied Catalysis A: General, 2019, 580, 1-10.	2.2	34
22	Impact of rock fabric, thermal behavior, and carbonate decomposition kinetics on quicklime industrial production and slaking reactivity. Journal of Thermal Analysis and Calorimetry, 2019, 136, 967-993.	2.0	11
23	The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup,) Tj ETQq1 1	. 0 .084 314	1 rgBT /Overlo
24	Organic Guests within a Ferroelastic Host: The Case of High Silica Zeolite ZSM-5. Journal of Physical Chemistry C, 2018, 122, 7249-7259.	1.5	2
25	Predicting Viscosity and Surface Tension at High Temperature of Porcelain Stoneware Bodies: A Methodological Approach. Materials, 2018, 11, 2475.	1.3	15
26	Development of La Doped Ni/CeO2 for CH4/CO2 Reforming. Journal of Carbon Research, 2018, 4, 60.	1.4	12
27	Increase of Ceria Redox Ability by Lanthanum Addition on Ni Based Catalysts for Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 13867-13876.	3.2	32
28	Tunable Out-of-Plane Excitons in 2D Single-Crystal Perovskites. ACS Photonics, 2018, 5, 4179-4185.	3.2	67
29	New spectroscopic and diffraction data to solve the vanadium-doped zircon pigment conundrum. Journal of the European Ceramic Society, 2018, 38, 5234-5245.	2.8	15
30	Sustainable Carbon Dioxide Photoreduction by a Cooperative Effect of Reactor Design and Titania Metal Promotion. Catalysts, 2018, 8, 41.	1.6	16
31	Three-dimensional distribution of primary melt inclusions in garnets by X-ray microtomography. American Mineralogist, 2018, 103, 911-926.	0.9	10
32	Removal of fluoride from aqueous solution by adsorption on NaP:HAp nanocomposite using response surface methodology. Chemical Engineering Research and Design, 2017, 109, 172-191.	2.7	37
33	Detailed Investigation of Thermal Regeneration of High-Silica ZSM-5 Zeolite through <i>in Situ</i> Synchrotron X-ray Powder Diffraction and Adsorption Studies. Journal of Physical Chemistry C, 2017, 121, 17958-17968.	1.5	8
34	Reconstructive phase transitions induced by temperature in gmelinite-Na zeolite. American Mineralogist, 2017, 102, 1727-1735.	0.9	7
35	Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24812-24820.	4.0	9
36	Editorial for Special Issue "New Insights in Stability, Structure and Properties of Porous Materials― Minerals (Basel, Switzerland), 2017, 7, 73.	0.8	0

#	Article	IF	CITATIONS
37	Eni Carbon Silicates: Innovative Hybrid Materials for Room-Temperature Gas Sensing. Proceedings (mdpi), 2017, 1, 322.	0.2	О
38	Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study. Minerals (Basel, Switzerland), 2017, 7, 34.	0.8	14
39	Eni Carbon Silicates: Innovative Hybrid Materials for Room-Temperature Gas Sensing. Proceedings (mdpi), 2017, 1, 1372.	0.2	О
40	Eni Carbon Silicates: Innovative Hybrid Materials for Room-Temperature Gas Sensing. Proceedings (mdpi), 2017, 1, 1372.	0.2	0
41	Niâ€Ti Codoped Hibonite Ceramic Pigments by Combustion Synthesis: Crystal Structure and Optical Properties. Journal of the American Ceramic Society, 2016, 99, 1749-1760.	1.9	21
42	Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization. Journal of the Iranian Chemical Society, 2016, 13, 1915-1930.	1.2	27
43	Continuous dehydration of cavansite under dynamic conditions: an in situ synchrotron powder-diffraction study. European Journal of Mineralogy, 2016, 28, 5-13.	0.4	5
44	Tin(IV) sulfide nanorods as a new gas sensing material. Sensors and Actuators B: Chemical, 2016, 223, 827-833.	4.0	51
45	Bimetallic Ni–Cu Catalysts for the Low-Temperature Ethanol Steam Reforming: Importance of Metal–Support Interactions. Catalysis Letters, 2015, 145, 549-558.	1.4	30
46	Adsorption of 1,2-dichloroethane on ZSM-5 and desorption dynamics by in situ synchrotron powder X-ray diffraction. Microporous and Mesoporous Materials, 2015, 215, 175-182.	2.2	28
47	Examining microstructural evolution of Portland cements by in-situ synchrotron micro-tomography. Journal of Materials Science, 2015, 50, 1805-1817.	1.7	33
48	Monoclinic–Orthorhombic Phase Transition in ZSM-5 Zeolite: Spontaneous Strain Variation and Thermodynamic Properties. Journal of Physical Chemistry C, 2015, 119, 7351-7359.	1.5	38
49	Limited Crystallite Growth upon Isothermal Annealing of Nanocrystalline Anatase. Crystal Growth and Design, 2015, 15, 2282-2290.	1.4	17
50	Effects of synthetic parameters on the catalytic performance of Au/CeO2 for furfural oxidative esterification. Journal of Catalysis, 2015, 330, 465-473.	3.1	60
51	Electrical conductivity of CdS films for gas sensing: Selectivity properties to alcoholic chains. Sensors and Actuators B: Chemical, 2015, 207, 504-510.	4.0	42
52	Structural relaxation around Cr3+ at the Na(Al1-xCrx)P2O7 octahedral site: an XRPD and EAS study. Zeitschrift Fur Kristallographie - Crystalline Materials, 2014, 229, .	0.4	3
53	Synthesis and study the controlled release of etronidazole from the new PEG/NaY and PEG/MCM-41 nanocomposites. Journal of Environmental Health Science & Engineering, 2014, 12, 35.	1.4	6
54	Hydrogen production by ethanol steam reforming: Effect of the synthesis parameters on the activity of Ni/TiO2 catalysts. International Journal of Hydrogen Energy, 2014, 39, 4252-4258.	3.8	69

#	Article	IF	CITATIONS
55	Ni/ZrO2 catalysts in ethanol steam reforming: Inhibition of coke formation by CaO-doping. Applied Catalysis B: Environmental, 2014, 150-151, 12-20.	10.8	111
56	The role of boric acid in the synthesis of Eni Carbon Silicates. Dalton Transactions, 2014, 43, 10617.	1.6	8
57	Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties. American Mineralogist, 2014, 99, 1736-1745.	0.9	35
58	Flexible Structure of a Thermally Stable Hybrid Aluminosilicate Built with Only the Three-Ring Unit. Journal of Physical Chemistry C, 2014, 118, 7458-7467.	1.5	10
59	On the structural relaxation around Cr3+ along binary solid solutions. European Journal of Mineralogy, 2014, 26, 359-370.	0.4	7
60	Ni-free, black ceramic pigments based on Coâ€"Crâ€"Feâ€"Mn spinels: A reappraisal of crystal structure, colour and technological behaviour. Ceramics International, 2013, 39, 9533-9547.	2.3	54
61	Next neighbors effect along the Ca–Sr–Ba-åkermanite join: Long-range vs. short-range structural features. Journal of Solid State Chemistry, 2013, 202, 134-142.	1.4	2
62	The unusual thermal behaviour of boron-ZSM-5 probed by "in situ―time-resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 2013, 173, 6-14.	2.2	12
63	Template burning effects on stability and boron coordination in boron levyne studied by in situ time resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 2013, 167, 117-126.	2.2	14
64	Crystal chemistry of cement-asbestos. American Mineralogist, 2013, 98, 1095-1105.	0.9	23
65	Structural stability, cation ordering, and local relaxation along the AlNbO4-Al0.5Cr0.5NbO4 join. American Mineralogist, 2012, 97, 910-917.	0.9	11
66	Local structural relaxation around Co2+ along the hardystonite–Co-åkermanite melilite solid solution. Physics and Chemistry of Minerals, 2012, 39, 713-723.	0.3	7
67	Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution. American Mineralogist, 2012, 97, 1394-1401.	0.9	46
68	A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 2012, 48, 7356.	2.2	33
69	Appraisal of microwave-assisted ion-exchange in mordenite by crystal structure analysis. Journal of Porous Materials, 2012, 19, 361-368.	1.3	13
70	Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts. Applied Catalysis B: Environmental, 2012, 111-112, 225-232.	10.8	165
71	The unusual thermal expansion of pure silica sodalite probed by in situ time-resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 2012, 151, 163-171.	2.2	19
72	Melilite-type and melilite-related compounds: structural variations along the join Sr2â^'x Ba x MgSi2O7 (0Ââ%ÂxÂâ%Â2) and high-pressure behavior of the two end-members. Physics and Chemistry of Minerals, 2012, 39, 199-211.	0.3	19

#	Article	IF	CITATIONS
73	Co-Doped Hardystonite, Ca2(Zn,Co)Si2O7, a New Blue Ceramic Pigment. Journal of the American Ceramic Society, 2011, 94, 1025-1030.	1.9	22
74	ERS-18: A new member of the NON–EUO–NES zeolite family. Microporous and Mesoporous Materials, 2011, 143, 6-13.	2.2	24
75	Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography. Journal of Applied Crystallography, 2011, 44, 272-280.	1.9	28
76	Crystal Structures of Ziegler–Natta Catalyst Supports. Chemistry - A European Journal, 2011, 17, 13892-13897.	1.7	24
77	Dehydration process and transient channel deformations of slightly hydrated boron leucite: An "in situ―time-resolved synchrotron powder diffraction study. Microporous and Mesoporous Materials, 2011, 142, 570-576.	2.2	15
78	Comparison of Structural Changes upon Heating of Zorite and Na-ETS-4 by In Situ Synchrotron Powder Diffraction., 2011,, 187-197.		0
79	X-ray diffraction microtomography (XRD-CT), a novel tool for non-invasive mapping of phase development in cement materials. Analytical and Bioanalytical Chemistry, 2010, 397, 2131-2136.	1.9	71
80	EMS-6, a novel microporous gadoliniumsilicate with monteregianite structure: Synthesis, crystal structure and thermal behavior. Microporous and Mesoporous Materials, 2010, 134, 115-123.	2.2	3
81	Co-doped willemite ceramic pigments: Technological behaviour, crystal structure and optical properties. Journal of the European Ceramic Society, 2010, 30, 3319-3329.	2.8	69
82	TiO2–MCM-41 for the photocatalytic abatement of NOx in gas phase. Applied Catalysis B: Environmental, 2010, 95, 130-136.	10.8	49
83	Dehydration and rehydration processes in gmelinite: An in situ X-ray single-crystal study. American Mineralogist, 2010, 95, 1773-1782.	0.9	14
84	The crystal structure of Sr-hardystonite, Sr2ZnSi2O7. Zeitschrift Fýr Kristallographie, 2010, 225, 298-301.	1.1	12
85	Two new acidic diphosphates Rb2M(H2P2O7) $2\hat{A}\cdot2H2O$ (M = Zn and Mg): Crystal structures and vibrational study. Journal of Alloys and Compounds, 2010, 492, 358-362.	2.8	9
86	Malayaite ceramic pigments: A combined optical spectroscopy and neutron/X-ray diffraction study. Materials Research Bulletin, 2009, 44, 1778-1785.	2.7	19
87	Influence of the preparation method on the morphological and composition properties of Pd–Au/ZrO2 catalysts and their effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Journal of Catalysis, 2009, 268, 122-130.	3.1	59
88	Sol–gel combustion synthesis of chromium doped yttrium aluminum perovskites. Journal of Sol-Gel Science and Technology, 2009, 50, 449-455.	1.1	30
89	Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment. Journal of the European Ceramic Society, 2009, 29, 2671-2678.	2.8	55
90	New Pd–Pt and Pd–Au catalysts for an efficient synthesis of H2O2 from H2 and O2 under very mild conditions. Applied Catalysis A: General, 2009, 358, 129-135.	2.2	81

#	Article	IF	CITATIONS
91	Structural Relaxation around Cr ³⁺ in YAlO ₃ â^'YCrO ₃ Perovskites from Electron Absorption Spectra. Journal of Physical Chemistry A, 2009, 113, 13772-13778.	1.1	32
92	Mesoporous Silica–Zirconia Systems for Catalytic Applications. Catalysis Letters, 2008, 125, 359-370.	1.4	25
93	High-temperature behaviour of melilite: in situ X-ray diffraction study of gehlenite–åkermanite–Na melilite solid solution. Physics and Chemistry of Minerals, 2008, 35, 147-155.	0.3	32
94	Gray–blue Al2O3–MoOx ceramic pigments: Crystal structure, colouring mechanism and performance. Dyes and Pigments, 2008, 76, 179-186.	2.0	24
95	Titania slag as a ceramic pigment. Dyes and Pigments, 2008, 77, 608-613.	2.0	15
96	Malayaite ceramic pigments prepared with galvanic sludge. Dyes and Pigments, 2008, 78, 157-164.	2.0	41
97	Multiple titanium substitutions in biotites from high-grade metapelitic xenoliths (Euganean Hills,) Tj ETQq1 1 0.78 93, 339-350.	34314 rgB⁻ 0.9	T /Overlock 16
98	Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions. American Mineralogist, 2008, 93, 327-338.	0.9	46
99	Non-ideality and defectivity of the akermanite-gehlenite solid solution: An X-ray diffraction and TEM study. American Mineralogist, 2007, 92, 1685-1694.	0.9	25
100	In Situ X-ray Single-Crystal Study on the Dehydration Mechanism in the Monoclinic Polytype of Tschernichite, the Mineral Analog of Zeolite Beta. Journal of Physical Chemistry C, 2007, 111, 4503-4511.	1.5	8
101	Crystal structural and optical properties of Cr-doped Y2Ti2O7 and Y2Sn2O7 pyrochlores. Acta Materialia, 2007, 55, 2229-2238.	3.8	109
102	Synthesis, characterization and crystal structure of EMS-2 – a novel microporous stannosilicate. Microporous and Mesoporous Materials, 2007, 101, 43-49.	2.2	6
103	Crystal structure, optical properties and colouring performance of karrooite MgTi2O5 ceramic pigments. Journal of Solid State Chemistry, 2007, 180, 3196-3210.	1.4	56
104	High-performance yellow ceramic pigments Zr(Ti1â~'xâ~'ySnxâ~'yVyMy)O4 (M=Al, In, Y): Crystal structure, colouring mechanism and technological properties. Materials Research Bulletin, 2007, 42, 64-76.	2.7	12
105	Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sciences, 2007, 9, 362-369.	1.5	65
106	The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Ceramics International, 2006, 32, 393-405.	2.3	69
107	The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Ceramics International, 2006, 32, 385-392.	2.3	67
108	Over-loaded Cu-ZSM-5 upon heating treatment: A time resolved X-ray diffraction study. Microporous and Mesoporous Materials, 2006, 94, 139-147.	2.2	20

#	Article	IF	Citations
109	Mesoporous sulphated zirconia by liquid-crystal templating method. Microporous and Mesoporous Materials, 2006, 91, 23-32.	2.2	29
110	In situ time resolved synchrotron powder diffraction study of thaumasite. Physics and Chemistry of Minerals, 2006, 33, 723-731.	0.3	22
111	Acylation of veratrole over promoted SZ/MCM-41 catalysts: Influence of metal promotion. Applied Catalysis A: General, 2006, 308, 216-222.	2.2	23
112	Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 2006, 67, 1973-1994.	1.9	279
113	Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties. Journal of Solid State Chemistry, 2006, 179, 233-246.	1.4	58
114	Co- and Ni-exchanged ferrierite: The contribution of synchrotron X-ray diffraction data to siting of TMIs. Catalysis Today, 2005, 110, 345-350.	2.2	6
115	Mineralogical study of historical bricks from the Great Palace of the Byzantine Emperors in Istanbul based on powder X-ray diffraction data. European Journal of Mineralogy, 2005, 17, 777-784.	0.4	9
116	Structural variations of Cr-doped (Y,REE)AlO3 perovskites. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 930-937.	0.4	14
117	Temperature-Induced Transformations in CoAPO-34 Molecular Sieve:Â A Combined In Situ X-ray Diffraction and FTIR Study. Journal of Physical Chemistry B, 2005, 109, 13483-13492.	1.2	9
118	Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie - International Edition, 2004, 43, 4933-4937.	7.2	152
119	Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1) ChemInform, 2004, 35, no.	0.1	0
120	ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 2004, 74, 59-71.	2.2	59
121	Dehydration and rehydration process in boggsite: An in situ X-ray single-crystal study. American Mineralogist, 2004, 89, 1033-1042.	0.9	13
122	Siting and coordination of cobalt in ferrierite: XRD and EXAFS studies at different Co loadings. Microporous and Mesoporous Materials, 2003, 62, 191-200.	2.2	41
123	Cation Migration and Structural Modification of Co-Exchanged Ferrierite upon Heating:Â a Time-Resolved X-ray Powder Diffraction Study. Journal of Physical Chemistry B, 2003, 107, 12973-12980.	1.2	40
124	In situ time resolved synchrotron powder diffraction study of mordenite. European Journal of Mineralogy, 2003, 15, 485-493.	0.4	32
125	Dehydration dynamics of epistilbite by in situ time resolved synchrotron powder diffraction. European Journal of Mineralogy, 2003, 15, 257-266.	0.4	28
126	Framework Topology of ERS-10 Zeolite. Angewandte Chemie - International Edition, 2002, 41, 4109-4112.	7.2	13

#	Article	IF	CITATIONS
127	Crystal Structure of Tetragonal and Monoclinic Polytypes of Tschernichite, the Natural Counterpart of Synthetic Zeolite Beta. Journal of Physical Chemistry B, 2002, 106, 10277-10284.	1.2	23
128	In situ dehydration of yugawaralite. American Mineralogist, 2001, 86, 185-192.	0.9	19
129	Rehydration mechanisms in zeolites: reversibility of T–O–T breaking and of tetrahedral cation migration in brewsterite. Microporous and Mesoporous Materials, 2001, 42, 277-287.	2.2	20
130	Ni2+ ion sites in hydrated and dehydrated forms of Ni-exchanged zeolite ferrierite. Microporous and Mesoporous Materials, 2000, 39, 423-430.	2.2	51
131	Single crystal neutron diffraction study of the natural zeolite barrerite in its ND4-exchanged form. European Journal of Mineralogy, 2000, 12, 1123-1129.	0.4	16
132	Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist, 1999, 84, 112-119.	0.9	77
133	Crystal structure of the zeolite mutinaite, the natural analog of ZSM-5. Zeolites, 1997, 19, 323-325.	0.9	68
134	Ethanol Steam Reforming on Lanthanum Ni-ZrO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4