Giuseppe Cruciani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4440025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 2006, 67, 1973-1994.	1.9	279
2	Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts. Applied Catalysis B: Environmental, 2012, 111-112, 225-232.	10.8	165
3	Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie - International Edition, 2004, 43, 4933-4937.	7.2	152
4	Ni/ZrO2 catalysts in ethanol steam reforming: Inhibition of coke formation by CaO-doping. Applied Catalysis B: Environmental, 2014, 150-151, 12-20.	10.8	111
5	Crystal structural and optical properties of Cr-doped Y2Ti2O7 and Y2Sn2O7 pyrochlores. Acta Materialia, 2007, 55, 2229-2238.	3.8	109
6	New Pd–Pt and Pd–Au catalysts for an efficient synthesis of H2O2 from H2 and O2 under very mild conditions. Applied Catalysis A: General, 2009, 358, 129-135.	2.2	81
7	Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist, 1999, 84, 112-119.	0.9	77
8	X-ray diffraction microtomography (XRD-CT), a novel tool for non-invasive mapping of phase development in cement materials. Analytical and Bioanalytical Chemistry, 2010, 397, 2131-2136.	1.9	71
9	The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Ceramics International, 2006, 32, 393-405.	2.3	69
10	Co-doped willemite ceramic pigments: Technological behaviour, crystal structure and optical properties. Journal of the European Ceramic Society, 2010, 30, 3319-3329.	2.8	69
11	Hydrogen production by ethanol steam reforming: Effect of the synthesis parameters on the activity of Ni/TiO2 catalysts. International Journal of Hydrogen Energy, 2014, 39, 4252-4258.	3.8	69
12	Crystal structure of the zeolite mutinaite, the natural analog of ZSM-5. Zeolites, 1997, 19, 323-325.	0.9	68
13	The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Ceramics International, 2006, 32, 385-392.	2.3	67
14	Tunable Out-of-Plane Excitons in 2D Single-Crystal Perovskites. ACS Photonics, 2018, 5, 4179-4185.	3.2	67
15	Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sciences, 2007, 9, 362-369.	1.5	65
16	Effects of synthetic parameters on the catalytic performance of Au/CeO2 for furfural oxidative esterification. Journal of Catalysis, 2015, 330, 465-473.	3.1	60
17	ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 2004, 74, 59-71.	2.2	59
18	Influence of the preparation method on the morphological and composition properties of Pd–Au/ZrO2 catalysts and their effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Journal of Catalysis, 2009, 268, 122-130.	3.1	59

#	Article	lF	CITATIONS
19	Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties. Journal of Solid State Chemistry, 2006, 179, 233-246.	1.4	58
20	Crystal structure, optical properties and colouring performance of karrooite MgTi2O5 ceramic pigments. Journal of Solid State Chemistry, 2007, 180, 3196-3210.	1.4	56
21	Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment. Journal of the European Ceramic Society, 2009, 29, 2671-2678.	2.8	55
22	Ni-free, black ceramic pigments based on Co—Cr—Fe—Mn spinels: A reappraisal of crystal structure, colour and technological behaviour. Ceramics International, 2013, 39, 9533-9547.	2.3	54
23	Ni2+ ion sites in hydrated and dehydrated forms of Ni-exchanged zeolite ferrierite. Microporous and Mesoporous Materials, 2000, 39, 423-430.	2.2	51
24	Tin(IV) sulfide nanorods as a new gas sensing material. Sensors and Actuators B: Chemical, 2016, 223, 827-833.	4.0	51
25	Nickel based catalysts for methane dry reforming: Effect of supports on catalytic activity and stability. International Journal of Hydrogen Energy, 2019, 44, 28065-28076.	3.8	51
26	TiO2–MCM-41 for the photocatalytic abatement of NOx in gas phase. Applied Catalysis B: Environmental, 2010, 95, 130-136.	10.8	49
27	Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions. American Mineralogist, 2008, 93, 327-338.	0.9	46
28	Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution. American Mineralogist, 2012, 97, 1394-1401.	0.9	46
29	Electrical conductivity of CdS films for gas sensing: Selectivity properties to alcoholic chains. Sensors and Actuators B: Chemical, 2015, 207, 504-510.	4.0	42
30	Siting and coordination of cobalt in ferrierite: XRD and EXAFS studies at different Co loadings. Microporous and Mesoporous Materials, 2003, 62, 191-200.	2.2	41
31	Malayaite ceramic pigments prepared with galvanic sludge. Dyes and Pigments, 2008, 78, 157-164.	2.0	41
32	Cation Migration and Structural Modification of Co-Exchanged Ferrierite upon Heating:Â a Time-Resolved X-ray Powder Diffraction Study. Journal of Physical Chemistry B, 2003, 107, 12973-12980.	1.2	40
33	Monoclinic–Orthorhombic Phase Transition in ZSM-5 Zeolite: Spontaneous Strain Variation and Thermodynamic Properties. Journal of Physical Chemistry C, 2015, 119, 7351-7359.	1.5	38
34	Removal of fluoride from aqueous solution by adsorption on NaP:HAp nanocomposite using response surface methodology. Chemical Engineering Research and Design, 2017, 109, 172-191.	2.7	37
35	Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties. American Mineralogist, 2014, 99, 1736-1745.	0.9	35
36	Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling. Applied Catalysis A: General, 2019, 580, 1-10.	2.2	34

#	Article	IF	CITATIONS
37	A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 2012, 48, 7356.	2.2	33
38	Examining microstructural evolution of Portland cements by in-situ synchrotron micro-tomography. Journal of Materials Science, 2015, 50, 1805-1817.	1.7	33
39	In situ time resolved synchrotron powder diffraction study of mordenite. European Journal of Mineralogy, 2003, 15, 485-493.	0.4	32
40	High-temperature behaviour of melilite: in situ X-ray diffraction study of gehlenite–åkermanite–Na melilite solid solution. Physics and Chemistry of Minerals, 2008, 35, 147-155.	0.3	32
41	Structural Relaxation around Cr ³⁺ in YAlO ₃ â^'YCrO ₃ Perovskites from Electron Absorption Spectra. Journal of Physical Chemistry A, 2009, 113, 13772-13778.	1.1	32
42	Increase of Ceria Redox Ability by Lanthanum Addition on Ni Based Catalysts for Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 13867-13876.	3.2	32
43	Sol–gel combustion synthesis of chromium doped yttrium aluminum perovskites. Journal of Sol-Gel Science and Technology, 2009, 50, 449-455.	1.1	30
44	Bimetallic Ni–Cu Catalysts for the Low-Temperature Ethanol Steam Reforming: Importance of Metal–Support Interactions. Catalysis Letters, 2015, 145, 549-558.	1.4	30
45	Mesoporous sulphated zirconia by liquid-crystal templating method. Microporous and Mesoporous Materials, 2006, 91, 23-32.	2.2	29
46	Dehydration dynamics of epistilbite by in situ time resolved synchrotron powder diffraction. European Journal of Mineralogy, 2003, 15, 257-266.	0.4	28
47	Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography. Journal of Applied Crystallography, 2011, 44, 272-280.	1.9	28
48	Adsorption of 1,2-dichloroethane on ZSM-5 and desorption dynamics by in situ synchrotron powder X-ray diffraction. Microporous and Mesoporous Materials, 2015, 215, 175-182.	2.2	28
49	Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization. Journal of the Iranian Chemical Society, 2016, 13, 1915-1930.	1.2	27
50	Non-ideality and defectivity of the akermanite-gehlenite solid solution: An X-ray diffraction and TEM study. American Mineralogist, 2007, 92, 1685-1694.	0.9	25
51	Mesoporous Silica–Zirconia Systems for Catalytic Applications. Catalysis Letters, 2008, 125, 359-370.	1.4	25
52	Gray–blue Al2O3–MoOx ceramic pigments: Crystal structure, colouring mechanism and performance. Dyes and Pigments, 2008, 76, 179-186.	2.0	24
53	ERS-18: A new member of the NON–EUO–NES zeolite family. Microporous and Mesoporous Materials, 2011, 143, 6-13.	2.2	24
54	Crystal Structures of Ziegler–Natta Catalyst Supports. Chemistry - A European Journal, 2011, 17, 13892-13897.	1.7	24

#	Article	IF	CITATIONS
55	Nanostructured SmFeO3 Gas Sensors: Investigation of the Gas Sensing Performance Reproducibility for Colorectal Cancer Screening. Sensors, 2020, 20, 5910.	2.1	24
56	Crystal Structure of Tetragonal and Monoclinic Polytypes of Tschernichite, the Natural Counterpart of Synthetic Zeolite Beta. Journal of Physical Chemistry B, 2002, 106, 10277-10284.	1.2	23
57	Acylation of veratrole over promoted SZ/MCM-41 catalysts: Influence of metal promotion. Applied Catalysis A: General, 2006, 308, 216-222.	2.2	23
58	Crystal chemistry of cement-asbestos. American Mineralogist, 2013, 98, 1095-1105.	0.9	23
59	Simultaneous removal of Pb(II), Cd(II) and bacteria from aqueous solution using amino-functionalized Fe ₃ O ₄ /NaP zeolite nanocomposite. Environmental Technology (United) Tj ETQq1 1 0.78	8 4.3 14 rgB	3T2/Overlock
60	In situ time resolved synchrotron powder diffraction study of thaumasite. Physics and Chemistry of Minerals, 2006, 33, 723-731.	0.3	22
61	Co-Doped Hardystonite, Ca2(Zn,Co)Si2O7, a New Blue Ceramic Pigment. Journal of the American Ceramic Society, 2011, 94, 1025-1030.	1.9	22
62	Phase evolution during reactive sintering by viscous flow: Disclosing the inner workings in porcelain stoneware firing. Journal of the European Ceramic Society, 2020, 40, 1738-1752.	2.8	22
63	Niâ€Ti Codoped Hibonite Ceramic Pigments by Combustion Synthesis: Crystal Structure and Optical Properties. Journal of the American Ceramic Society, 2016, 99, 1749-1760.	1.9	21
64	Rehydration mechanisms in zeolites: reversibility of T–O–T breaking and of tetrahedral cation migration in brewsterite. Microporous and Mesoporous Materials, 2001, 42, 277-287.	2.2	20
65	Over-loaded Cu-ZSM-5 upon heating treatment: A time resolved X-ray diffraction study. Microporous and Mesoporous Materials, 2006, 94, 139-147.	2.2	20
66	In situ dehydration of yugawaralite. American Mineralogist, 2001, 86, 185-192.	0.9	19
67	Malayaite ceramic pigments: A combined optical spectroscopy and neutron/X-ray diffraction study. Materials Research Bulletin, 2009, 44, 1778-1785.	2.7	19
68	The unusual thermal expansion of pure silica sodalite probed by in situ time-resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 2012, 151, 163-171.	2.2	19
69	Melilite-type and melilite-related compounds: structural variations along the join Sr2â^'x Ba x MgSi2O7 (0Â≤xÂ≤2) and high-pressure behavior of the two end-members. Physics and Chemistry of Minerals, 2012, 39, 199-211.	0.3	19
70	Systematic study of TiO ₂ /ZnO mixed metal oxides for CO ₂ photoreduction. RSC Advances, 2019, 9, 21660-21666.	1.7	19
71	Limited Crystallite Growth upon Isothermal Annealing of Nanocrystalline Anatase. Crystal Growth and Design, 2015, 15, 2282-2290.	1.4	17
	Multiple titanium substitutions in biotites from high-grade metapelitic xenoliths (Euganean Hills,) Tj ETQq0 0 0 rgE	3T /Overlo	ck 10 Tf 50

72

93, 339-350.

#	Article	IF	CITATIONS
73	Sustainable Carbon Dioxide Photoreduction by a Cooperative Effect of Reactor Design and Titania Metal Promotion. Catalysts, 2018, 8, 41.	1.6	16
74	Single crystal neutron diffraction study of the natural zeolite barrerite in its ND4-exchanged form. European Journal of Mineralogy, 2000, 12, 1123-1129.	0.4	16
75	Titania slag as a ceramic pigment. Dyes and Pigments, 2008, 77, 608-613.	2.0	15
76	Dehydration process and transient channel deformations of slightly hydrated boron leucite: An "in situ―time-resolved synchrotron powder diffraction study. Microporous and Mesoporous Materials, 2011, 142, 570-576.	2.2	15
77	Predicting Viscosity and Surface Tension at High Temperature of Porcelain Stoneware Bodies: A Methodological Approach. Materials, 2018, 11, 2475.	1.3	15
78	New spectroscopic and diffraction data to solve the vanadium-doped zircon pigment conundrum. Journal of the European Ceramic Society, 2018, 38, 5234-5245.	2.8	15
79	Structural variations of Cr-doped (Y,REE)AlO3 perovskites. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 930-937.	0.4	14
80	Dehydration and rehydration processes in gmelinite: An in situ X-ray single-crystal study. American Mineralogist, 2010, 95, 1773-1782.	0.9	14
81	Template burning effects on stability and boron coordination in boron levyne studied by in situ time resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 2013, 167, 117-126.	2.2	14
82	Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study. Minerals (Basel, Switzerland), 2017, 7, 34.	0.8	14
83	Framework Topology of ERS-10 Zeolite. Angewandte Chemie - International Edition, 2002, 41, 4109-4112.	7.2	13
84	Dehydration and rehydration process in boggsite: An in situ X-ray single-crystal study. American Mineralogist, 2004, 89, 1033-1042.	0.9	13
85	Appraisal of microwave-assisted ion-exchange in mordenite by crystal structure analysis. Journal of Porous Materials, 2012, 19, 361-368.	1.3	13
86	Design of a Metal-Oxide Solid Solution for Sub-ppm H ₂ Detection. ACS Sensors, 2022, 7, 573-583.	4.0	13
87	High-performance yellow ceramic pigments Zr(Ti1â^'xâ^'ySnxâ^'yVyMy)O4 (M=Al, In, Y): Crystal structure, colouring mechanism and technological properties. Materials Research Bulletin, 2007, 42, 64-76.	2.7	12
88	The crystal structure of Sr-hardystonite, Sr2ZnSi2O7. Zeitschrift Für Kristallographie, 2010, 225, 298-301.	1.1	12
89	The unusual thermal behaviour of boron-ZSM-5 probed by "in situ―time-resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 2013, 173, 6-14.	2.2	12
90	Development of La Doped Ni/CeO2 for CH4/CO2 Reforming. Journal of Carbon Research, 2018, 4, 60.	1.4	12

#	Article	IF	CITATIONS
91	Ceramisation of hazardous elements: Benefits and pitfalls of the inertisation through silicate ceramics. Journal of Hazardous Materials, 2022, 423, 126851.	6.5	12
92	Structural stability, cation ordering, and local relaxation along the AlNbO4-Al0.5Cr0.5NbO4 join. American Mineralogist, 2012, 97, 910-917.	0.9	11
93	Impact of rock fabric, thermal behavior, and carbonate decomposition kinetics on quicklime industrial production and slaking reactivity. Journal of Thermal Analysis and Calorimetry, 2019, 136, 967-993.	2.0	11
94	Flexible Structure of a Thermally Stable Hybrid Aluminosilicate Built with Only the Three-Ring Unit. Journal of Physical Chemistry C, 2014, 118, 7458-7467.	1.5	10
95	Three-dimensional distribution of primary melt inclusions in garnets by X-ray microtomography. American Mineralogist, 2018, 103, 911-926.	0.9	10
96	Effects of SiO2-based scaffolds in TiO2 photocatalyzed CO2 reduction. Catalysis Today, 2022, 387, 54-60.	2.2	10
97	Mineralogical study of historical bricks from the Great Palace of the Byzantine Emperors in Istanbul based on powder X-ray diffraction data. European Journal of Mineralogy, 2005, 17, 777-784.	0.4	9
98	Temperature-Induced Transformations in CoAPO-34 Molecular Sieve:Â A Combined In Situ X-ray Diffraction and FTIR Study. Journal of Physical Chemistry B, 2005, 109, 13483-13492.	1.2	9
99	Two new acidic diphosphates Rb2M(H2P2O7)2·2H2O (M = Zn and Mg): Crystal structures and vibrational study. Journal of Alloys and Compounds, 2010, 492, 358-362.	2.8	9
100	Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing. ACS Applied Materials & Interfaces, 2017, 9, 24812-24820.	4.0	9
101	In Situ X-ray Single-Crystal Study on the Dehydration Mechanism in the Monoclinic Polytype of Tschernichite, the Mineral Analog of Zeolite Beta. Journal of Physical Chemistry C, 2007, 111, 4503-4511.	1.5	8
102	The role of boric acid in the synthesis of Eni Carbon Silicates. Dalton Transactions, 2014, 43, 10617.	1.6	8
103	Detailed Investigation of Thermal Regeneration of High-Silica ZSM-5 Zeolite through <i>in Situ</i> Synchrotron X-ray Powder Diffraction and Adsorption Studies. Journal of Physical Chemistry C, 2017, 121, 17958-17968.	1.5	8
104	The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup,) Tj ETQqO	00 og BT /0	Dve s lock 10 Tf
105	CuZSM-5@HMS composite as an efficient micro-mesoporous catalyst for conversion of sugars into levulinic acid. Catalysis Today, 2022, 390-391, 146-161.	2.2	8
106	Local structural relaxation around Co2+ along the hardystonite–Co-åkermanite melilite solid solution. Physics and Chemistry of Minerals, 2012, 39, 713-723.	0.3	7
107	On the structural relaxation around Cr3+ along binary solid solutions. European Journal of Mineralogy, 2014, 26, 359-370.	0.4	7
108	Reconstructive phase transitions induced by temperature in gmelinite-Na zeolite. American Mineralogist, 2017, 102, 1727-1735.	0.9	7

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Manganese Dithiocarbamate Complexes: New Evidence of Dioxygen Activation. Molecules, 2021, 26, 5954.	1.7	7
110	Selective Hydrogenation of 5â€Hydroxymethylfurfural to 1â€Hydroxyâ€2,5â€hexanedione by Biocharâ€Supportec Ru Catalysts. ChemSusChem, 2022, 15, .	3.6	7
111	Co- and Ni-exchanged ferrierite: The contribution of synchrotron X-ray diffraction data to siting of TMIs. Catalysis Today, 2005, 110, 345-350.	2.2	6
112	Synthesis, characterization and crystal structure of EMS-2 – a novel microporous stannosilicate. Microporous and Mesoporous Materials, 2007, 101, 43-49.	2.2	6
113	Synthesis and study the controlled release of etronidazole from the new PEG/NaY and PEG/MCM-41 nanocomposites. Journal of Environmental Health Science & Engineering, 2014, 12, 35.	1.4	6
114	Titanium Dioxide-Based Nanocomposites for Enhanced Gas-Phase Photodehydrogenation. Materials, 2019, 12, 3093.	1.3	6
115	Continuous dehydration of cavansite under dynamic conditions: an in situ synchrotron powder-diffraction study. European Journal of Mineralogy, 2016, 28, 5-13.	0.4	5
116	Levulinic Acid Production: Comparative Assessment of Al-Rich Ordered Mesoporous Silica and Microporous Zeolite. Catalysis Letters, 2023, 153, 41-53.	1.4	5
117	Anomalous inclusion of chloride ions in ethylenediammonium lead iodide turns 1D non-perovskite into a 2D perovskite structure. CrystEngComm, 2020, 22, 8063-8071.	1.3	4
118	Ethanol Steam Reforming on Lanthanum Ni-ZrO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
119	Investigation and prediction of sticking tendency, blocks formation and occasional melting of lime at HT (1300°C) by the overburning test method. Construction and Building Materials, 2021, 294, 123577.	3.2	4
120	EMS-6, a novel microporous gadoliniumsilicate with monteregianite structure: Synthesis, crystal structure and thermal behavior. Microporous and Mesoporous Materials, 2010, 134, 115-123.	2.2	3
121	Structural relaxation around Cr3+ at the Na(Al1-xCrx)P2O7 octahedral site: an XRPD and EAS study. Zeitschrift Fur Kristallographie - Crystalline Materials, 2014, 229, .	0.4	3
122	Next neighbors effect along the Ca–Sr–Ba-åkermanite join: Long-range vs. short-range structural features. Journal of Solid State Chemistry, 2013, 202, 134-142.	1.4	2
123	Organic Guests within a Ferroelastic Host: The Case of High Silica Zeolite ZSM-5. Journal of Physical Chemistry C, 2018, 122, 7249-7259.	1.5	2
124	Micro-meso structure NaP zeolite @TiO2 nanocomposite: eco-friendly photocatalyst for simultaneous removal COD and degradation of methylene blue under solar irradiation. Photochemical and Photobiological Sciences, 2022, 21, 1011-1029.	1.6	2
125	The role of substrate materials on stabilization of CdO, 2CdO·CdSO4 and 2CdS·2CdO·CdSO4 from CdS powder film annealed in air. Materials Chemistry and Physics, 2021, 257, 123251.	2.0	1
126	Synthesis and characterization of micro-meso structure NaY zeolite in the presence of Nano-ZnO as a guest molecule. Journal of the Iranian Chemical Society, 2021, 18, 2873.	1.2	1

#	Article	IF	CITATIONS
127	Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1) ChemInform, 2004, 35, no.	0.1	0
128	Editorial for Special Issue "New Insights in Stability, Structure and Properties of Porous Materials― Minerals (Basel, Switzerland), 2017, 7, 73.	0.8	0
129	Eni Carbon Silicates: Innovative Hybrid Materials for Room-Temperature Gas Sensing. Proceedings (mdpi), 2017, 1, 322.	0.2	0
130	Manufacturing of Bent Silicon Crystals for Steering of Particle Beam at Ultra-High Energy Synchrotrons. Proceedings (mdpi), 2019, 26, 37.	0.2	0
131	Structural and Functional Behaviour of Ce-Doped Wide-Bandgap Semiconductors for Photo-Catalytic Applications. Catalysts, 2021, 11, 1209.	1.6	0
132	Comparison of Structural Changes upon Heating of Zorite and Na-ETS-4 by In Situ Synchrotron Powder Diffraction. , 2011, , 187-197.		0
133	Eni Carbon Silicates: Innovative Hybrid Materials for Room-Temperature Gas Sensing. Proceedings (mdpi), 2017, 1, 1372.	0.2	0
134	Eni Carbon Silicates: Innovative Hybrid Materials for Room-Temperature Gas Sensing. Proceedings (mdpi), 2017, 1, 1372.	0.2	0