
Michael D Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4439805/publications.pdf Version: 2024-02-01

MICHAEL D MURDHY

#	Article	IF	CITATIONS
1	The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices. Applied Energy, 2021, 295, 117040.	10.1	68
2	Comparison of modelling techniques for milk-production forecasting. Journal of Dairy Science, 2014, 97, 3352-3363.	3.4	59
3	Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms. Computers and Electronics in Agriculture, 2018, 150, 74-87.	7.7	52
4	Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment. Applied Energy, 2015, 149, 392-403.	10.1	50
5	Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches. Applied Energy, 2019, 250, 991-1010.	10.1	49
6	Multiple linear regression modelling of on-farm direct water and electricity consumption on pasture based dairy farms. Computers and Electronics in Agriculture, 2018, 148, 337-346.	7.7	40
7	Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses. Energies, 2020, 13, 1288.	3.1	40
8	Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine. Applied Energy, 2019, 250, 1110-1119.	10.1	39
9	Recycled Polymers for Use as Bitumen Modifiers. Journal of Materials in Civil Engineering, 2001, 13, 306-314.	2.9	37
10	A mechanistic model for electricity consumption on dairy farms: Definition, validation, and demonstration. Journal of Dairy Science, 2014, 97, 4973-4984.	3.4	31
11	Assessing the impact of changes in the electricity price structure on dairy farm energy costs. Applied Energy, 2015, 137, 1-8.	10.1	30
12	Investment appraisal of technology innovations on dairy farm electricity consumption. Journal of Dairy Science, 2015, 98, 898-909.	3.4	26
13	Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis. Applied Energy, 2018, 210, 529-537.	10.1	26
14	Determination of optimal battery utilization to minimize operating costs for a grid-connected building with renewable energy sources. Energy Conversion and Management, 2018, 174, 157-174.	9.2	26
15	An automatic model configuration and optimization system for milk production forecasting. Computers and Electronics in Agriculture, 2016, 128, 100-111.	7.7	25
16	Rapid milk cooling control with varying water and energy consumption. Biosystems Engineering, 2013, 116, 15-22.	4.3	22
17	A field study of thermal comfort performance for a slotted louvre ventilation system in a low energy retrofit. Energy and Buildings, 2017, 135, 312-323.	6.7	22
18	Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis. Applied Energy, 2020, 278, 115534.	10.1	20

MICHAEL D MURPHY

#	Article	IF	CITATIONS
19	Passive control strategies for cooling a non-residential nearly zero energy office: Simulated comfort resilience now and in the future. Energy and Buildings, 2021, 231, 110607.	6.7	20
20	A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid. Energies, 2017, 10, 1765.	3.1	19
21	A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland. Agriculture (Switzerland), 2021, 11, 600.	3.1	17
22	Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms. Applied Energy, 2019, 242, 1697-1711.	10.1	16
23	Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards. Precision Agriculture, 2021, 22, 922-946.	6.0	16
24	Over 20 Years of Machine Learning Applications on Dairy Farms: A Comprehensive Mapping Study. Sensors, 2022, 22, 52.	3.8	15
25	A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios. Energies, 2022, 15, 3227.	3.1	14
26	Development, Calibration and Validation of an Internal Air Temperature Model for a Naturally Ventilated Nearly Zero Energy Building: Comparison of Model Types and Calibration Methods. Energies, 2021, 14, 871.	3.1	13
27	Development of a discrete infrastructure optimization model for economic assessment on dairy farms (DIOMOND). Computers and Electronics in Agriculture, 2019, 156, 508-522.	7.7	12
28	A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Information Processing in Agriculture, 2022, 9, 243-253.	4.1	10
29	Global Dairy Sector: Trends, Prospects, and Challenges. Sustainability, 2022, 14, 4193.	3.2	10
30	Development of a grass measurement optimisation tool to efficiently measure herbage mass on grazed pastures. Computers and Electronics in Agriculture, 2020, 178, 105799.	7.7	9
31	Facilitating high levels of wind penetration in a smart grid through the optimal utilization of battery storage in microgrids: An analysis of the trade-offs between economic performance and wind generation facilitation. Energy Conversion and Management, 2020, 206, 112354.	9.2	9
32	Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems. Sustainability, 2022, 14, 8025.	3.2	9
33	A modular virtual laboratory for quadrotor control simulation. IFAC-PapersOnLine, 2016, 49, 93-98.	0.9	8
34	Effect of parity weighting on milk production forecast models. Computers and Electronics in Agriculture, 2019, 157, 589-603.	7.7	8
35	Effect of introducing weather parameters on the accuracy of milk production forecast models. Information Processing in Agriculture, 2020, 7, 120-138.	4.1	7
36	elmada: Dynamic electricity carbon emission factors and prices for Europe. Journal of Open Source Software, 2021, 6, 3625.	4.6	7

MICHAEL D MURPHY

#	Article	IF	CITATIONS
37	One-day-ahead cost optimisation for a multi-energy source building using a genetic algorithm. , 2016, , .		6
38	A Global Review of Monitoring, Modeling, and Analyses of Water Demand in Dairy Farming. Sustainability, 2020, 12, 7201.	3.2	6
39	<i>GrassQ - A holistic precision grass measurement and analysis system to optimize pasture based livestock production</i> . , 2019, , .		4
40	Economic optimisation for a building with an integrated micro-grid connected to the national grid. , 2015, , .		2
41	<i>Photovoltaic systems on dairy farms: An economic analysis</i> . , 2018, , .		2
42	Assessing the Effect of Modifying Milking Routines on Dairy Farm Economic and Environmental Performance. AgriEngineering, 2021, 3, 266-277.	3.2	2
43	Comparative Efficiency of Lactation Curve Models Using Irish Experimental Dairy Farms Data. , 2016, , .		1
44	<i>Development of a Labour Utilisation Decision Support Tool to Efficiently Measure Grass Herbage Mass Using a Rising Plate Meter</i> . , 2018, , .		1
45	A load shifting controller for Cold Thermal Energy Storage systems. , 2012, , .		0
46	A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study. IOP Conference Series: Earth and Environmental Science, 2016, 32, 012061.	0.3	0
47	Monetary savings produced by multiple microgrid controller configurations in a smart grid scenario. , 2016, , .		0
48	Comparing multiple linear regression and support vector machine models for predicting electricity consumption on pasture based dairy farms. , 2018, , .		0
49	<i>A decision support and optimization platform for energy technology investments on dairy farms</i> . , 2019, , .		0
50	Announcement for "Energies Outstanding Reviewer Award 2020―Winners. Energies, 2020, 13, 2821.	3.1	0