James C Carolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/44394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	5.6	913
2	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	8.8	330
3	The secreted salivary proteome of the pea aphid <i>Acyrthosiphon pisum</i> characterised by mass spectrometry. Proteomics, 2009, 9, 2457-2467.	2.2	224
4	Predicted Effector Molecules in the Salivary Secretome of the Pea Aphid (<i>Acyrthosiphon pisum</i>): A Dual Transcriptomic/Proteomic Approach. Journal of Proteome Research, 2011, 10, 1505-1518.	3.7	219
5	A Massive Expansion of Effector Genes Underlies Gall-Formation in the Wheat Pest Mayetiola destructor. Current Biology, 2015, 25, 613-620.	3.9	171
6	Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environmental Pollution, 2019, 246, 423-434.	7.5	150
7	Unveiling cryptic species of the bumblebee subgenus <i>Bombus s. str.</i> worldwide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity, 2012, 10, 21-56.	1.2	147
8	A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biology, 2015, 16, 83.	8.8	130
9	Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE, 2019, 14, e0225743.	2.5	125
10	Colour Patterns Do Not Diagnose Species: Quantitative Evaluation of a DNA Barcoded Cryptic Bumblebee Complex. PLoS ONE, 2012, 7, e29251.	2.5	108
11	Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins. PLoS ONE, 2013, 8, e57413.	2.5	104
12	Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants. Genome Biology and Evolution, 2018, 10, 1554-1572.	2.5	67
13	Phylogenetics of Papaver and Related Genera Based on DNA Sequences from ITS Nuclear Ribosomal DNA and Plastid trnL Intron and trnL–F Intergenic Spacers. Annals of Botany, 2006, 98, 141-155.	2.9	64
14	Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris. BMC Genomics, 2011, 12, 623.	2.8	63
15	Integrated Metabonomicâ^'Proteomic Analysis of an Insectâ^'Bacterial Symbiotic System. Journal of Proteome Research, 2010, 9, 1257-1267.	3.7	47
16	Cryptic Bumblebee Species: Consequences for Conservation and the Trade in Greenhouse Pollinators. PLoS ONE, 2012, 7, e32992.	2.5	43
17	Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics, 2019, 20, 959.	2.8	35
18	Infection by the castrating parasitic nematode <i>Sphaerularia bombi</i> changes gene expression in <i>Bombus terrestris</i> bumblebee queens. Insect Molecular Biology, 2020, 29, 170-182.	2.0	32

JAMES C CAROLAN

#	Article	IF	CITATIONS
19	Prolonged pre-incubation increases the susceptibility of <i>Galleria mellonella</i> larvae to bacterial and fungal infection. Virulence, 2015, 6, 458-465.	4.4	27
20	The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 2017, 100, 82-92.	2.0	26
21	The Aspergillus fumigatus Secretome Alters the Proteome of Pseudomonas aeruginosa to Stimulate Bacterial Growth: Implications for Co-infection. Molecular and Cellular Proteomics, 2020, 19, 1346-1359.	3.8	24
22	A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model. PLoS Neglected Tropical Diseases, 2016, 10, e0004837.	3.0	20
23	The role of the liver in the migration of parasites of global significance. Parasites and Vectors, 2019, 12, 531.	2.5	18
24	Revealing the hidden niches of cryptic bumblebees in Great Britain: Implications for conservation. Biological Conservation, 2015, 182, 126-133.	4.1	17
25	The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp PLoS ONE, 2019, 14, e0225881.	2.5	17
26	The liver proteome in a mouse model for Ascaris suum resistance and susceptibility: evidence for an altered innate immune response. Parasites and Vectors, 2019, 12, 402.	2.5	15
27	Simultaneous determination of pesticides from soils: a comparison between QuEChERS extraction and Dutch mini-Luke extraction methods. Analytical Methods, 2021, 13, 5638-5650.	2.7	11
28	The effect of entomopathogenic fungal culture filtrate on the immune response and haemolymph proteome of the large pine weevil, Hylobius abietis. Insect Biochemistry and Molecular Biology, 2018, 101, 1-13.	2.7	10
29	Phylogenetics of Taxus Using the Internal Transcribed Spacers of Nuclear Ribosomal DNA and Plastid trnL-F Regions. Horticulturae, 2020, 6, 19.	2.8	10
30	Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms, 2021, 9, 435.	3.6	9
31	Proteomic analysis of Bayvarol® resistance mechanisms in the honey bee parasite Varroa destructor. Journal of Apicultural Research, 2016, 55, 49-64.	1.5	8
32	Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor. Journal of Insect Physiology, 2018, 107, 291-301.	2.0	8
33	Characterization of the Proteomic Response of A549 Cells Following Sequential Exposure to <i>Aspergillus fumigatus</i> and <i>Pseudomonas aeruginosa</i> . Journal of Proteome Research, 2020, 19, 279-291.	3.7	7
34	Exposure to the Pseudomonas aeruginosa secretome alters the proteome and secondary metabolite production of Aspergillus fumigatus. Microbiology (United Kingdom), 2022, 168, .	1.8	7
35	Assessing availability of European plant protection product data: an example evaluating basic area treated. PeerJ, 0, 10, e13586.	2.0	7
36	A cathepsin L-like protease from Strongylus vulgaris: An orthologue of Caenorhabditis elegans CPL-1. Experimental Parasitology, 2009, 121, 293-299.	1.2	6

JAMES C CAROLAN

#	Article	IF	CITATIONS
37	The effect of temperature conditioning (9°C and 20°C) on the proteome of entomopathogenic nematode infective juveniles. PLoS ONE, 2022, 17, e0266164.	2.5	4
38	Genome sequence of the English grain aphid, <i>Sitobion avenae</i> and its endosymbiont <i>Buchnera aphidicola</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
39	Proteomic Insights into the Hidden World of Phloem Sap Feeding. , 2016, , 49-61.		2
40	Molecular characterization of Hydrellia lagarosiphon, a leaf mining biological control agent for Lagarosiphon major, reveals weak variance across large geographic areas in South Africa. Biological Control, 2019, 132, 8-15.	3.0	2
41	In silico Characterization of a Candidate Protein from Aphid Gelling Saliva with Potential for Aphid Control in Plants. Protein and Peptide Letters, 2020, 27, 158-167.	0.9	2
42	Bumblebees of the Azores (Apidae: Bombus). Journal of Natural History, 2018, 52, 345-349.	0.5	1
43	Global protein responses of multidrug resistance plasmid-containing Escherichia coli to ampicillin, cefotaxime, imipenem and ciprofloxacin. Journal of Global Antimicrobial Resistance, 2022, 28, 90-96.	2.2	0
44	Fungicides, herbicides and bees: A systematic review of existing research and methods. , 2019, 14, e0225743.		0
45	Fungicides, herbicides and bees: A systematic review of existing research and methods. , 2019, 14, e0225743.		0
46	Fungicides, herbicides and bees: A systematic review of existing research and methods. , 2019, 14, e0225743.		0
47	Fungicides, herbicides and bees: A systematic review of existing research and methods. , 2019, 14, e0225743.		0