Linlong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/443937/publications.pdf Version: 2024-02-01

LINLONG

#	Article	IF	CITATIONS
1	Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. Macromolecular Bioscience, 2018, 18, e1800068.	4.1	62
2	Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation. Colloids and Surfaces B: Biointerfaces, 2018, 169, 233-241.	5.0	62
3	Synergistic osteogenesis promoted by magnetically actuated nano-mechanical stimuli. Nanoscale, 2019, 11, 23423-23437.	5.6	57
4	Improved hemostatic effects by Fe3+ modified biomimetic PLLA cotton-like mat via sodium alginate grafted with dopamine. Bioactive Materials, 2021, 6, 2346-2359.	15.6	51
5	Mussel-Inspired Conducting Copolymer with Aniline Tetramer as Intelligent Biological Adhesive for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 634-646.	5.2	49
6	Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. Journal of Applied Polymer Science, 2017, 134, 45271.	2.6	47
7	A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells. Journal of Materials Chemistry B, 2020, 8, 2673-2688.	5.8	31
8	Immobilization via polydopamine of dual growth factors on polyetheretherketone: improvement of cell adhesion, proliferation, and osteo-differentiation. Journal of Materials Science, 2019, 54, 11179-11196.	3.7	27
9	An injectable hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. Materials Science and Engineering C, 2017, 80, 326-334.	7.3	24
10	DOPA-derived electroactive copolymer and IGF-1 immobilized poly(lactic-co-glycolic) Tj ETQq0 0 0 rgBT /Overlock Journal, 2021, 416, 129129.	10 Tf 50 12.7	387 Td (acid) 22
11	Porous Scaffolds of Poly(lactic- <i>co</i> -glycolic acid) and Mesoporous Hydroxyapatite Surface Modified by Poly(γ-benzyl- <scp>l</scp> -glutamate) (PBLC) for in Vivo Bone Repair. ACS Biomaterials Science and Engineering, 2019, 5, 2466-2481.	5.2	20
12	<i>In vitro</i> degradation behavior of a hydroxyapatite/poly(lactide- <i>co</i> -glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. Journal of Materials Chemistry B, 2017, 5, 8695-8706.	5.8	13
13	<i>In situ</i> polymerization of poly(γ-benzyl- <scp> </scp> -glutamate) on mesoporous hydroxyapatite with high graft amounts for the direct fabrication of biodegradable cell microcarriers and their osteogenic induction. Journal of Materials Chemistry B, 2018, 6, 3315-3330.	5.8	13
14	An electrically and magnetically responsive nanocomposite of GdPO ₄ ·H ₂ O/P3HT/PLGA with electrical stimulation for synergistically enhancing the proliferation and differentiation of pre-osteoblasts. New Journal of Chemistry, 2019, 43, 17315-17326.	2.8	13
15	Conductive stretchable shape memory elastomers combining with electrical stimulation for synergistic osteogenic differentiation. Polymer Testing, 2020, 90, 106672.	4.8	13
16	A Novel Approach via Surface Modification of Degradable Polymers With Adhesive DOPA-IGF-1 for Neural Tissue Engineering. Journal of Pharmaceutical Sciences, 2019, 108, 551-562.	3.3	11
17	Preparation of polycarbonate/gelatine microspheres using a high-voltage electrostatic technique for enhancing the adhesion and proliferation of mesenchymal stem cells. Journal of Materials Science, 2019, 54, 7180-7197.	3.7	10
18	Microcarriers with Controllable Size via Electrified Liquid Jets and Phase Separation Technique Promote Cell Proliferation and Osteogenic Differentiation. ACS Applied Bio Materials, 2019, 2, 4134-4141.	4.6	6

#	Article	IF	CITATIONS
19	Cranial Bone Transport Promotes Angiogenesis, Neurogenesis, and Modulates Meningeal Lymphatic Function in Middle Cerebral Artery Occlusion Rats. Stroke, 2022, 53, 1373-1385.	2.0	6
20	Highly Permeable Gelatin/Poly(lactic acid) Fibrous Scaffolds with a Three-Dimensional Spatial Structure for Efficient Cell Infiltration, Mineralization and Bone Regeneration. ACS Applied Bio Materials, 2020, 3, 6932-6943.	4.6	5
21	Binding efficiency of recombinant collagenâ€binding basic fibroblast growth factors (CBDâ€bFGFs) and their promotion for NIHâ€3T3 cell proliferation. Biopolymers, 2018, 109, e23105.	2.4	4

Enhanced osteogenic activities of polyetheretherketone surface modified by poly(sodium pâ \in styrene) Tj ETQq0 0 0.rgBT /Overlock 10 Tr 2.6

23	The emerging translational potential of GDF11 in chronic wound healing. Journal of Orthopaedic Translation, 2022, , .	3.9	0	
----	---	-----	---	--