S-E Kudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4439286/publications.pdf

Version: 2024-02-01

44069 32842 10,715 166 48 100 citations h-index g-index papers 167 167 167 4851 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Impact of the clinical use of artificial intelligence–assisted neoplasia detection for colonoscopy: a large-scale prospective, propensity score–matched study (with video). Gastrointestinal Endoscopy, 2022, 95, 155-163.	1.0	19
2	Progress in magnifying colonoscopy: Road to optical biopsy. Digestive Endoscopy, 2022, 34, 91-94.	2.3	1
3	Tumor Location as a Prognostic Factor in T1 Colorectal Cancer. Journal of the Anus, Rectum and Colon, 2022, 6, 9-15.	1.1	6
4	Current problems and perspectives of pathological risk factors for lymph node metastasis in T1 colorectal cancer: Systematic review. Digestive Endoscopy, 2022, 34, 901-912.	2.3	26
5	Early colorectal lesion (depressed type) detected using artificial intelligence. Endoscopy, 2022, , .	1.8	1
6	Challenges in artificial intelligence for polyp detection. Digestive Endoscopy, 2022, 34, 870-871.	2.3	2
7	Changes in halitosis value before and after <scp><i>Helicobacter pylori⟨ i>< scp> eradication: A singleâ€institutional prospective study. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 928-932.</i></scp>	2.8	5
8	Comprehensive Diagnostic Performance of Real-Time Characterization of Colorectal Lesions Using an Artificial Intelligence–Assisted System: A Prospective Study. Gastroenterology, 2022, 163, 323-325.e3.	1.3	14
9	Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. The Lancet Digital Health, 2022, 4, e436-e444.	12.3	78
10	Real-Time Artificial Intelligence–Based Optical Diagnosis of Neoplastic Polyps during Colonoscopy. , 2022, 1, .		36
11	Use of advanced endoscopic technology for optical characterization of neoplasia in patients with ulcerative colitis: Systematic review. Digestive Endoscopy, 2022, 34, 1297-1310.	2.3	4
12	ARTIFICIAL INTELLIGENCE FOR REAL-TIME OPTICAL DIAGNOSIS OF NEOPLASTIC POLYPS DURING COLONOSCOPY. Endoscopy, 2022, 54, .	1.8	0
13	A PROSPECTIVE STUDY OF REAL-TIME COMPUTER-AIDED CHARACTERIZATION FOR COLORECTAL LESIONS -DIAGNOSTIC PERFORMANCE AND IMPACT ON HUMAN DIAGNOSIS Endoscopy, 2022, 54, .	1.8	0
14	Impact of artificial intelligence on colorectal polyp detection for early-career endoscopists: an international comparative study. Scandinavian Journal of Gastroenterology, 2022, 57, 1272-1277.	1.5	3
15	Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method. Endoscopy, 2021, 53, 893-901.	1.8	35
16	Randomised comparison of postpolypectomy surveillance intervals following a two-round baseline colonoscopy: the Japan Polyp Study Workgroup. Gut, 2021, 70, 1469-1478.	12.1	30
17	Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointestinal Endoscopy, 2021, 93, 960-967.e3.	1.0	111
18	Current status and future perspective on artificial intelligence for lower endoscopy. Digestive Endoscopy, 2021, 33, 273-284.	2.3	25

#	Article	IF	Citations
19	Artificial intelligence in colonoscopy ―Now on the market. What's next?. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 7-11.	2.8	40
20	Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology, 2021, 160, 1075-1084.e2.	1.3	99
21	Gastrointestinal: Realâ€time observation in vivo by endocytoscope: a case of colonic leiomyosarcoma compared to adenocarcinoma. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2335-2335.	2.8	0
22	Combined endocytoscopy with pit pattern diagnosis in ulcerative colitisâ€associated neoplasia: Pilot study. Digestive Endoscopy, 2021, , .	2.3	12
23	Artificial intelligence-assisted colonic endocytoscopy for cancer recognition: a multicenter study. Endoscopy International Open, 2021, 09, E1004-E1011.	1.8	14
24	Clinical Efficacy of Endocytoscopy for Gastrointestinal Endoscopy. Clinical Endoscopy, 2021, 54, 455-463.	1.5	8
25	Reply. Gastroenterology, 2021, 161, 733-734.	1.3	0
26	Clinical and endoscopic characteristics of post-colonoscopy colorectal cancers detected within 10 years after a previous negative examination. Endoscopy International Open, 2021, 09, E1472-E1479.	1.8	1
27	Short‑ and long‑term outcomes of self‑expanding metallic stent placement vs. emergency surgery for malignant colorectal obstruction. Molecular and Clinical Oncology, 2021, 14, 63.	1.0	3
28	Can artificial intelligence help to detect dysplasia in patients with ulcerative colitis?. Endoscopy, 2021, 53, E273-E274.	1.8	25
29	Risk Stratification of T1 Colorectal Cancer Metastasis to Lymph Nodes: Current Status and Perspective. Gut and Liver, 2021, 15, 818-826.	2.9	20
30	Artificial Intelligence for Diagnosing Colorectal Lesion. Nippon Laser Igakkaishi, 2021, , .	0.0	0
31	Image-Enhanced Capsule Endoscopy Improves the Identification of Small Intestinal Lesions. Diagnostics, 2021, 11, 2122.	2.6	5
32	Beyond complete endoscopic healing: goblet appearance using an endocytoscope to predict future sustained clinical remission in ulcerative colitis. Digestive Endoscopy, 2021, , .	2.3	13
33	Clinicopathological features of small T1 colorectal cancers. World Journal of Clinical Cases, 2021, 9, 10088-10097.	0.8	1
34	Identification of a small, depressed type of colorectal invasive cancer by an artificial intelligence-assisted detection system. Endoscopy, 2021, , .	1.8	1
35	A Diminutive Invasive Sigmoid Colon Tumor Observed by Endocytoscopy. Clinical Gastroenterology and Hepatology, 2020, 18, e103.	4.4	0
36	Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clinical Gastroenterology and Hepatology, 2020, 18, 1874-1881.e2.	4.4	167

#	Article	IF	Citations
37	Artificial intelligence for magnifying endoscopy, endocytoscopy, and confocal laser endomicroscopy of the colorectum. Techniques and Innovations in Gastrointestinal Endoscopy, 2020, 22, 56-60.	0.9	1
38	Endocytoscopy. , 2020, , 45-51.		0
39	Predictors of invasive cancer of large laterally spreading colorectal tumors: A multicenter study in Japan. JGH Open, 2020, 4, 83-89.	1.6	8
40	Endocytoscopy for the differential diagnosis of colorectal low-grade adenoma: a novel possibility for the "resect and discard―strategy. Gastrointestinal Endoscopy, 2020, 91, 676-683.	1.0	13
41	Tumor location and patient sex are novel risk factors of lymph node metastasis in T1 colorectal cancer. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 2292-2292.	2.8	5
42	Left-sided location is a risk factor for lymph node metastasis of T1 colorectal cancer: a single-center retrospective study. International Journal of Colorectal Disease, 2020, 35, 1911-1919.	2.2	20
43	Can artificial intelligence standardise colonoscopy quality?. The Lancet Gastroenterology and Hepatology, 2020, 5, 331-332.	8.1	5
44	Endocytoscopic intramucosal capillary network changes and crypt architecture abnormalities can predict relapse in patients with an ulcerative colitis Mayo endoscopic score of 1. Digestive Endoscopy, 2020, 32, 1082-1091.	2.3	11
45	How Far Will Clinical Application of Al Applications Advance for Colorectal Cancer Diagnosis?. Journal of the Anus, Rectum and Colon, 2020, 4, 47-50.	1.1	3
46	Artificial Intelligence for Colorectal Polyp Detection and Characterization. Current Treatment Options in Gastroenterology, 2020, 18, 200-211.	0.8	7
47	Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (withÂvideo). Gastrointestinal Endoscopy, 2020, 92, 905-911.e1.	1.0	95
48	Treatment policy for colonic laterally spreading tumors based on each clinicopathologic feature of 4 subtypes: actual status of pseudo-depressed type. Gastrointestinal Endoscopy, 2020, 92, 1083-1094.e6.	1.0	15
49	Endocytoscopy with NBI has the potential to correctly diagnose diminutive colorectal polyps that are difficult to diagnose using conventional NBI. Endoscopy International Open, 2020, 08, E360-E367.	1.8	7
50	Depressed Colorectal Cancer: A New Paradigm in Early Colorectal Cancer. Clinical and Translational Gastroenterology, 2020, 11, e00269.	2.5	7
51	Effects of the use of a wavy cap on the tip of the colonoscope on the training performance of novice endoscopists for colonoscopy. World Academy of Sciences Journal, 2020, 3, .	0.6	O
52	Small invasive colon cancer with adenoma observed by endocytoscopy: A case report. World Journal of Gastrointestinal Endoscopy, 2020, 12, 304-309.	1.2	2
53	Simultaneous detection and characterization of diminutive polypsÂwithÂthe use of artificial intelligence during colonoscopy. VideoGIE, 2019, 4, 7-10.	0.7	51
54	Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointestinal Endoscopy, 2019, 90, 55-63.	1.0	104

#	Article	IF	CITATIONS
55	Two cases of colitisâ€associated neoplasia observed with endocytoscopy. Digestive Endoscopy, 2019, 31, 43-44.	2.3	3
56	Stable polypâ€scene classification via subsampling and residual learning from an imbalanced large dataset. Healthcare Technology Letters, 2019, 6, 237-242.	3.3	5
57	Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointestinal Endoscopy, 2019, 89, 408-415.	1.0	165
58	Artificial intelligence and colonoscopy: Current status and future perspectives. Digestive Endoscopy, 2019, 31, 363-371.	2.3	108
59	Artificial intelligence and upper gastrointestinal endoscopy: Current status and future perspective. Digestive Endoscopy, 2019, 31, 378-388.	2.3	100
60	Surgical starting time in the morning versus the afternoon: propensity score matched analysis of operative outcomes following laparoscopic colectomy for colorectal cancer. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 1769-1776.	2.4	15
61	Potential of artificial intelligenceâ€assisted colonoscopy using an endocytoscope (with video). Digestive Endoscopy, 2018, 30, 52-53.	2.3	22
62	Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience. Gastroenterology, 2018, 154, 2027-2029.e3.	1.3	281
63	Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy, 2018, 50, 230-240.	1.8	100
64	Narrow band imaging efficiency in evaluation of mucosal healing/relapse of ulcerative colitis. Endoscopy International Open, 2018, 06, E518-E523.	1.8	24
65	Diminutive intramucosal invasive (Tis) sigmoid colon carcinoma. Clinical Journal of Gastroenterology, 2018, 11, 359-363.	0.8	4
66	White light-emitting contrast image capsule endoscopy for visualization of small intestine lesions: a pilot study. Endoscopy International Open, 2018, 06, E315-E321.	1.8	6
67	Clinicopathological features of T1 colorectal carcinomas with skip lymphovascular invasion. Oncology Letters, 2018, 16, 7264-7270.	1.8	4
68	Detecting colorectal polyps via machine learning. Nature Biomedical Engineering, 2018, 2, 713-714.	22.5	24
69	Expression of matrix metalloproteinase-7 correlates with the invasion of T1 colorectal carcinoma. Oncology Letters, 2018, 15, 3614-3620.	1.8	1
70	New-generation full-spectrum endoscopy versus standard forward-viewing colonoscopy: a multicenter, randomized, tandem colonoscopy trial (J-FUSE Study). Gastrointestinal Endoscopy, 2018, 88, 854-864.	1.0	34
71	Risk factors of recurrence in T1 colorectal cancers treated by endoscopic resection alone or surgical resection with lymph node dissection. International Journal of Colorectal Disease, 2018, 33, 1029-1038.	2.2	22
72	Endocytoscopic findings of colorectal neuroendocrine tumors (with video). Endoscopy International Open, 2018, 06, E589-E593.	1.8	1

#	Article	IF	CITATIONS
73	Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy. Annals of Internal Medicine, 2018, 169, 357.	3.9	391
74	A case of gastrointestinal injury associated with nonsteroidal anti-inflammatory drug use. Progress of Digestive Endoscopy, 2018, 93, 113-115.	0.0	0
75	Comparative clinicopathological characteristics of colon and rectal T1 carcinoma. Oncology Letters, 2017, 13, 805-810.	1.8	14
76	In vivo detection of desmoplastic reaction using endocytoscopy: A new diagnostic marker of submucosal or more extensive invasion in colorectal carcinoma. Molecular and Clinical Oncology, 2017, 6, 291-295.	1.0	4
77	Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 757-766.	2.8	65
78	Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy, 2017, 49, 798-802.	1.8	109
79	Patient gender as a factor associated with lymph node metastasis in T1 colorectal cancer: A systematic review and meta-analysis. Molecular and Clinical Oncology, 2017, 6, 517-524.	1.0	16
80	The role of microvessel density, lymph node metastasis, and tumor size as prognostic factors of distant metastasis in colorectal cancer. Oncology Letters, 2017, 13, 4327-4333.	1.8	21
81	Management and risk factor of stenosis after endoscopic submucosal dissection for colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 86, 358-369.	1.0	39
82	Classification of nuclear morphology in endocytoscopy of colorectal neoplasms. Gastrointestinal Endoscopy, 2017, 85, 628-638.	1.0	15
83	A novel ability of endocytoscopy to diagnose histological grade of differentiation in T1 colorectal carcinomas. Endoscopy, 2017, 50, 69-74.	1.8	9
84	The concept of â€~Semi-clean colon' using the pit pattern classification system has the potential to be acceptable in combination with a <3-year surveillance colonoscopy. Oncology Letters, 2017, 14, 2735-2742.	1.8	7
85	Use of endocytoscopy for identification of sessile serrated adenoma/polyps and hyperplastic polyps by quantitative image analysis of the luminal areas. Endoscopy International Open, 2017, 05, E769-E774.	1.8	5
86	Retrospective analysis of large bowel obstruction or perforation caused by oral preparation for colonoscopy. Endoscopy International Open, 2017, 05, E471-E476.	1.8	6
87	Computer-aided diagnosis for colonoscopy. Endoscopy, 2017, 49, 813-819.	1.8	130
88	The necessity of colorectal cancer screening for elderly patients. Translational Gastroenterology and Hepatology, 2017, 2, 19-19.	3.0	3
89	Laparoscopic Extirpation of a Schwannoma in the Lateral Pelvic Space. Case Reports in Surgery, 2016, 2016, 1-4.	0.4	4
90	â€~Head Invasion' Is Not a Metastasis-Free Condition in Pedunculated T1 Colorectal Carcinomas Based on the Precise Histopathological Assessment. Digestion, 2016, 94, 166-175.	2.3	13

#	Article	IF	CITATIONS
91	Magnifying chromoendoscopic and endocytoscopic findings of juvenile polyps in the colon and rectum. Oncology Letters, 2016, 11, 237-242.	1.8	4
92	Morphology as a risk factor for the malignant potential of T2 colorectal cancer. Molecular and Clinical Oncology, 2016, 5, 223-226.	1.0	4
93	Evaluation of microvascular findings of deeply invasive colorectal cancer by endocytoscopy with narrow-band imaging. Endoscopy International Open, 2016, 04, E1280-E1285.	1.8	10
94	Comparison of the endocytoscopic and clinicopathologic features of colorectal neoplasms. Endoscopy International Open, 2016, 04, E397-E402.	1.8	5
95	Characterization of Colorectal Lesions Using a Computer-Aided Diagnostic System for Narrow-Band Imaging Endocytoscopy. Gastroenterology, 2016, 150, 1531-1532.e3.	1.3	158
96	Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy, 2016, 48, 1110-1118.	1.8	98
97	Comparison of Targeted vs Random Biopsies for Surveillance ofÂUlcerative Colitis-Associated Colorectal Cancer. Gastroenterology, 2016, 151, 1122-1130.	1.3	171
98	Management of T1 colorectal cancers after endoscopic treatment based on the risk stratification of lymph node metastasis. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1126-1132.	2.8	73
99	Diagnosis of sessile serrated adenomas/polyps using endocytoscopy (with videos). Digestive Endoscopy, 2016, 28, 43-48.	2.3	9
100	Narrowâ€band imaging (NBI) magnifying endoscopic classification of colorectal tumors proposed by the Japan NBI Expert Team. Digestive Endoscopy, 2016, 28, 526-533.	2.3	410
101	Practical problems of measuring depth of submucosal invasion in T1 colorectal carcinomas. International Journal of Colorectal Disease, 2016, 31, 137-146.	2.2	45
102	Diagnostic performance of endocytoscopy for evaluating the invasion depth of different morphological types of colorectal tumors. Digestive Endoscopy, 2015, 27, 755-762.	2.3	18
103	Transverse colon cancer occurring at a colostomy site 35 years after colostomy: a case report. World Journal of Surgical Oncology, 2015, 13, 171.	1.9	8
104	Characteristics of colorectal tumours in asymptomatic patients with negative immunochemical faecal occult blood test results. Molecular and Clinical Oncology, 2015, 3, 1019-1024.	1.0	2
105	InÂvivo histopathology using endocytoscopy for non-neoplastic changes in the gastric mucosa: a prospective pilot study (with video). Gastrointestinal Endoscopy, 2015, 81, 875-881.	1.0	20
106	The AURKA/TPX2 axis drives colon tumorigenesis cooperatively with MYC. Annals of Oncology, 2015, 26, 935-942.	1.2	54
107	Advanced colonoscopic imaging using endocytoscopy. Digestive Endoscopy, 2015, 27, 232-238.	2.3	13
108	JGES guidelines for colorectal endoscopic submucosal dissection/endoscopic mucosal resection. Digestive Endoscopy, 2015, 27, 417-434.	2.3	470

#	Article	IF	CITATIONS
109	Endoscopic Ex Vivo Evaluation of Bile Concentrations by Narrow Band Imaging: A Pilot Study. Gastroenterology Research and Practice, 2015, 2015, 1-3.	1.5	13
110	Endocytoscopic microvasculature evaluation is a reliable new diagnostic method for colorectal lesions (with video). Gastrointestinal Endoscopy, 2015, 82, 912-923.	1.0	41
111	Local Recurrence After Endoscopic Resection for Large Colorectal Neoplasia: A Multicenter Prospective Study in Japan. American Journal of Gastroenterology, 2015, 110, 697-707.	0.4	244
112	Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointestinal Endoscopy, 2015, 81, 621-629.	1.0	136
113	<i>In vivo</i> gastric mucosal histopathology using endocytoscopy. World Journal of Gastroenterology, 2015, 21, 5002.	3.3	9
114	Endocytoscopic narrow-band imaging efficiency for evaluation of inflammatory activity in ulcerative colitis. World Journal of Gastroenterology, 2015, 21, 2108-2115.	3.3	32
115	Endocytoscopy can provide additional diagnostic ability to magnifying chromoendoscopy for colorectal neoplasms. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 83-90.	2.8	39
116	Double staining with crystal violet and methylene blue is appropriate for colonic endocytoscopy: <scp>A</scp> n <scp><i>in vivo</i></scp> prospective pilot study. Digestive Endoscopy, 2014, 26, 403-408.	2.3	40
117	Efficiency of endocytoscopy in differentiating types of serrated polyps. Gastrointestinal Endoscopy, 2014, 79, 648-656.	1.0	35
118	The newly developed MoviPrep can reduce the patients' burden in the preparation for colonoscopy. Progress of Digestive Endoscopy, 2014, 85, 47-50.	0.0	0
119	A case of gastric anisakiasis with ulceration after tumor diagnosis. Progress of Digestive Endoscopy, 2014, 85, 76-77.	0.0	1
120	Diagnostic Technique: In Vivo Diagnosis of Cellular Atypia Using Endocytoscope: EC Classification in Squamous Epithelium. Video Journal and Encyclopedia of GI Endoscopy, 2013, 1, 16-17.	0.1	0
121	Magnification narrow-band imaging for the diagnosis of early gastric cancer: a review of the Japanese literature for the Western endoscopist. Gastrointestinal Endoscopy, 2013, 78, 452-461.	1.0	24
122	Real-time in vivo histologic examination using a probe-based endocytoscopy system for differentiating duodenal polyps. Endoscopy, 2013, 45, E53-E54.	1.8	4
123	Endocytoscopy provides an in vivo virtual histopathological diagnosis of Whipple's disease. Endoscopy, 2013, 45, E143-E144.	1.8	O
124	Comprehensive diagnostic ability of endocytoscopy compared with biopsy for colorectal neoplasms: a prospective randomized noninferiority trial. Endoscopy, 2013, 45, 98-105.	1.8	68
125	Depressed-Type Colonic Lesions and "De Novo―Cancer in Familial Adenomatous Polyposis: A Colonoscopist's Viewpoint. ISRN Gastroenterology, 2013, 2013, 1-6.	1.5	4
126	<scp><i>In vivo</i></scp> assessment of a carcinoid tumor using endocytoscopy. Digestive Endoscopy, 2013, 25, 465-465.	2.3	2

#	Article	IF	Citations
127	Endocytoscopic visualization of squamous cell islands within Barrett's epithelium. World Journal of Gastrointestinal Endoscopy, 2013, 5, 174.	1.2	9
128	Depressed-Type Adenoma of the Ileum. , 2013, , 43-46.		0
129	Mo1374 Usefulness of Endocytoscopic Findings for Colorectal Serrated Lesions. Gastrointestinal Endoscopy, 2012, 75, AB404.	1.0	0
130	Recent advancement of observing living cells in the esophagus using CM double staining: Endocytoscopic atypia classification. Ecological Management and Restoration, 2012, 25, 235-241.	0.4	41
131	MID-TERM PROGNOSIS AFTER ENDOSCOPIC RESECTION FOR SUBMUCOSAL COLORECTAL CARCINOMA: SUMMARY OF A MULTICENTER QUESTIONNAIRE SURVEY CONDUCTED BY THE COLORECTAL ENDOSCOPIC RESECTION STANDARDIZATION IMPLEMENTATION WORKING GROUP IN JAPANESE SOCIETY FOR CANCER O. Digestive Endoscopy, 2011, 23, 190-194.	2.3	38
132	Target biopsy or step biopsy? Optimal surveillance for ulcerative colitis: a Japanese nationwide randomized controlled trial. Journal of Gastroenterology, 2011, 46, 11-16.	5.1	19
133	Clinical usefulness of pit patterns for detecting colonic lesions requiring surgical treatment. International Journal of Colorectal Disease, 2011, 26, 1531-1540.	2.2	33
134	Diagnosis of colorectal lesions with a novel endocytoscopic classification $\hat{a} \in \hat{a}$ a pilot study. Endoscopy, 2011, 43, 869-875.	1.8	142
135	DIAGNOSTIC ACCURACY OF PIT PATTERN AND VASCULAR PATTERN ANALYSES IN COLORECTAL LESIONS. Digestive Endoscopy, 2010, 22, 192-199.	2.3	91
136	Five-year Incidence of Advanced Neoplasia after Initial Colonoscopy in Japan: A Multicenter Retrospective Cohort Study. Japanese Journal of Clinical Oncology, 2009, 39, 435-442.	1.3	55
137	Diagnosis of colorectal lesions with the magnifying narrow-band imaging system. Gastrointestinal Endoscopy, 2009, 70, 522-531.	1.0	179
138	Endoscopic and chromoendoscopic atlas featuring dysplastic lesions in surveillance colonoscopy for patients with long-standing ulcerative colitis. Inflammatory Bowel Diseases, 2008, 14, 259-264.	1.9	42
139	Flat and Depressed Types of Early Colorectal Cancers: From East to West. Gastrointestinal Endoscopy Clinics of North America, 2008, 18, 581-593.	1.4	40
140	New frontiers of endoscopy from the large intestine to the small intestine. Gastrointestinal Endoscopy, 2007, 66, S3-S6.	1.0	4
141	Résection muqueuse endoscopique (RME)versus dissection sous-muqueuse endoscopique (DSE) dans les néoplasies intra-épithéliales du tractus digestif. Acta Endoscopica, 2007, 37, 635-644.	0.0	0
142	Real-time in vivo virtual histology of colorectal lesions when using the endocytoscopy system. Gastrointestinal Endoscopy, 2006, 63, 1010-1017.	1.0	144
143	Early colorectal cancer: concept, diagnosis, and management. International Journal of Clinical Oncology, 2006, 11, 1-8.	2.2	84
144	Endoscopic in vivo evaluation of tissue atypia in the esophagus using a newly designed integrated endocytoscope: a pilot trial. Endoscopy, 2006, 38, 891-895.	1.8	146

#	Article	IF	Citations
145	Seprafilm® Adhesion Barrier-New Insertion Method. Nihon Daicho Komonbyo Gakkai Zasshi, 2006, 59, 466-467.	0.0	1
146	Flat and Depressed Lesions of the Colorectum. Clinical Gastroenterology and Hepatology, 2005, 3, S33-S36.	4.4	66
147	Technology Insight: laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract. Nature Reviews Gastroenterology & Hepatology, 2005, 2, 31-37.	1.7	97
148	Novel Endoscopic Imaging Techniques toward in vivo Observation of Living Cancer Cells in the Gastrointestinal Tract. Digestive Diseases, 2004, 22, 334-337.	1.9	12
149	In vivo observation of living cancer cells in the esophagus, stomach, and colon using catheter-type contact endoscope, "Endo-Cytoscopy system― Gastrointestinal Endoscopy Clinics of North America, 2004, 14, 589-594.	1.4	91
150	Interobserver and intra-observer consistency in the endoscopic assessment of colonic pit patterns. Gastrointestinal Endoscopy, 2004, 60, 520-526.	1.0	93
151	Virtual Histology of Colorectal Lesions Using Laser-Scanning Confocal Microscopy. Endoscopy, 2003, 35, 1033-1038.	1.8	99
152	New bowel preparation before CT colonography. Nihon Daicho Komonbyo Gakkai Zasshi, 2003, 56, 306-307.	0.0	0
153	Title is missing!. Nihon Daicho Komonbyo Gakkai Zasshi, 2003, 56, 423-424.	0.0	0
154	Endoscopic Mucosal Resection of the Colon. Gastrointestinal Endoscopy Clinics of North America, 2001, 11, 519-535.	1.4	101
155	Pit Pattern in Colorectal Neoplasia: Endoscopic Magnifying View. Endoscopy, 2001, 33, 367-373.	1.8	472
156	Study of the Treatment for Internal Hemorrhoid by Means of EHL Device Nihon Daicho Komonbyo Gakkai Zasshi, 2001, 54, 905-909.	0.0	0
157	Endoscopic mucosal resection of the colon: the Japanese technique. Gastrointestinal Endoscopy Clinics of North America, 2001, 11, 519-35.	1.4	32
158	Colonoscopic Diagnosis and Management of Nonpolypoid Early Colorectal Cancer. World Journal of Surgery, 2000, 24, 1081-1090.	1.6	391
159	Flat adenomas exist in asymptomatic people: important implications for colorectal cancer screening programmes. Gut, 1998, 43, 229-231.	12.1	83
160	Endoscopic Diagnosis and Treatment of Early Colorectal Cancer. World Journal of Surgery, 1997, 21, 694-701.	1.6	243
161	Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointestinal Endoscopy, 1996, 44, 8-14.	1.0	978
162	Depressed Type of Colorectal Cancer. Endoscopy, 1995, 27, 54-57.	1.8	125

#	ARTICLE	IF	CITATIONS
163	The problem of de novo colorectal carcinoma. European Journal of Cancer, 1995, 31, 1118-1120.	2.8	125
164	Colorectal tumours and pit pattern Journal of Clinical Pathology, 1994, 47, 880-885.	2.0	619
165	Endoscopic Mucosal Resection of Flat and Depressed Types of Early Colorectal Cancer. Endoscopy, 1993, 25, 455-461.	1.8	809
166	Study design and patient recruitment for the Japan Polyp Study. Open Access Journal of Clinical Trials, 0, , 37.	1.5	13