
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The hair follicleâ€psoriasis axis: Shared regulatory mechanisms and therapeutic targets. Experimental Dermatology, 2022, 31, 266-279.	2.9	6
2	Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Experimental Dermatology, 2022, 31, 567-576.	2.9	7
3	Effect of minoxidil formulations on human scalp skin xenotransplants on SCID mice: A novel preâ€clinical in vivo assay for androgenetic alopecia research. Experimental Dermatology, 2022, 31, 980-982.	2.9	3
4	Dual composite bioadhesives for wound closure applications: An in vitro and in vivo study. Polymers for Advanced Technologies, 2022, 33, 3862-3877.	3.2	2
5	Human organ rejuvenation by VEGF-A: Lessons from the skin. Science Advances, 2022, 8, .	10.3	14
6	Mouse models of atopic dermatitis: a critical reappraisal. Experimental Dermatology, 2021, 30, 319-336.	2.9	30
7	Evidence from a humanized mouse model of androgenetic alopecia that plateletâ€rich plasma stimulates hair regrowth, hair shaft diameter and vellusâ€toâ€terminal hair reconversion <i>inÂvivo</i> . British Journal of Dermatology, 2021, 185, 644-646.	1.5	4
8	Resident human dermal Î ³ ÎT-cells operate as stress-sentinels: Lessons from the hair follicle. Journal of Autoimmunity, 2021, 124, 102711.	6.5	22
9	Apremilast and tofacitinib exert differential effects in the humanized mouse model of alopecia areata. British Journal of Dermatology, 2020, 182, 227-229.	1.5	5
10	An osteopontinâ€derived peptide inhibits human hair growth at least in part by decreasing fibroblast growth factorâ€7 production in outer root sheath keratinocytes. British Journal of Dermatology, 2020, 182, 1404-1414.	1.5	12
11	Pro-inflammatory Vδ1+T-cells infiltrates are present in and around the hair bulbs of non-lesional and lesional alopecia areata hair follicles. Journal of Dermatological Science, 2020, 100, 129-138.	1.9	23
12	Mouse Models of Alopecia Areata: C3H/HeJ Mice Versus the Humanized AA Mouse Model. Journal of Investigative Dermatology Symposium Proceedings, 2020, 20, S11-S15.	0.8	5
13	Hair follicle immune privilege and its collapse in alopecia areata. Experimental Dermatology, 2020, 29, 703-725.	2.9	120
14	Frontiers in alopecia areata pathobiology research. Journal of Allergy and Clinical Immunology, 2019, 144, 1478-1489.	2.9	52
15	Instantaneous depolarization of T cells via dopamine receptors, and inhibition of activated T cells of Psoriasis patients and inflamed human skin, by D1â€like receptor agonist: Fenoldopam. Immunology, 2019, 158, 171-193.	4.4	13
16	516 Possible role of ILC1 in the pathogenesis of alopecia areata (AA). Journal of Investigative Dermatology, 2019, 139, S88.	0.7	3
17	JAK inhibitors and alopecia areata. Lancet, The, 2019, 393, 318-319.	13.7	56
18	Innate lymphoid cells 3 induce psoriasis in xenotransplanted healthy human skin. Journal of Allergy and Clinical Immunology, 2018, 142, 305-308.e6.	2.9	29

#	Article	IF	CITATIONS
19	iNKT cells ameliorate human autoimmunity: Lessons from alopecia areata. Journal of Autoimmunity, 2018, 91, 61-72.	6.5	26
20	ldentifying novel strategies for treating human hair loss disorders: Cyclosporine A suppresses the Wnt inhibitor, SFRP1, in the dermal papilla of human scalp hair follicles. PLoS Biology, 2018, 16, e2003705.	5.6	68
21	Oncogenic role of microRNAâ€155 in mycosis fungoides: an <i>in vitro</i> and xenograft mouse model study. British Journal of Dermatology, 2017, 177, 791-800.	1.5	25
22	T-cell "induced-self―MHC class I/peptide complexes may enable "de novo―tolerance induction to neo-antigens occurring outside of the thymus. Experimental Dermatology, 2017, 26, 529-531.	2.9	8
23	051 γδT cells as novel players in alopecia areata pathobiology: Vδ1 + T lymphocytes may recognize "stressed―hair follicle keratinocytes, leading to IFNγ-dependent hair follicle dystrophy and immune privilege collapse. Journal of Investigative Dermatology, 2016, 136, S9.	0.7	1
24	Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmunity Reviews, 2016, 15, 726-735.	5.8	84
25	Biodegradable soy wound dressings with controlled release of antibiotics: Results from a guinea pig burn model. Burns, 2015, 41, 1459-1467.	1.9	25
26	The PDE4 inhibitor, apremilast, suppresses experimentally induced alopecia areata in human skin in vivo. Journal of Dermatological Science, 2015, 77, 74-76.	1.9	50
27	Hybrid wound dressings with controlled release of antibiotics: Structure-release profile effects and in vivo study in a guinea pig burn model. Acta Biomaterialia, 2015, 22, 155-163.	8.3	36
28	Abnormal Interactions between Perifollicular Mast Cells and CD8+ T-Cells May Contribute to the Pathogenesis of Alopecia Areata. PLoS ONE, 2014, 9, e94260.	2.5	114
29	What causes alopecia areata?. Experimental Dermatology, 2013, 22, 609-626.	2.9	137
30	Autoimmune Disease Induction in a Healthy Human Organ: A Humanized Mouse Model of Alopecia Areata. Journal of Investigative Dermatology, 2013, 133, 844-847.	0.7	65
31	A New Humanized Mouse Model for Alopecia Areata. Journal of Investigative Dermatology Symposium Proceedings, 2013, 16, S37-S38.	0.8	23
32	Blocking Potassium Channels (Kv1.3): A New Treatment Option for Alopecia Areata?. Journal of Investigative Dermatology, 2013, 133, 2088-2091.	0.7	27
33	Alopecia Areata. New England Journal of Medicine, 2012, 366, 1515-1525.	27.0	456
34	The Beneficial Effect of Blocking Kv1.3 in the Psoriasiform SCID Mouse Model. Journal of Investigative Dermatology, 2011, 131, 118-124.	0.7	44
35	IGFBP7 as a Potential Therapeutic Target in Psoriasis. Journal of Investigative Dermatology, 2011, 131, 1767-1770.	0.7	14
36	An unexpected twist in alopecia areata pathogenesis: are NK cells protective and CD49b+ T cells pathogenic?. Experimental Dermatology, 2010, 19, e347-9.	2.9	25

#	Article	IF	CITATIONS
37	Apremilast, a cAMP phosphodiesteraseâ€4 inhibitor, demonstrates antiâ€inflammatory activity <i>in vitro</i> and in a model of psoriasis. British Journal of Pharmacology, 2010, 159, 842-855.	5.4	344
38	Collapse of Immune Privilege in Alopecia Areata: Coincidental or Substantial?. Journal of Investigative Dermatology, 2010, 130, 2535-2537.	0.7	44
39	Lymphocytes, neuropeptides, and genes involved in alopecia areata. Journal of Clinical Investigation, 2007, 117, 2019-2027.	8.2	243
40	Alopecia Areata: A tissue specific autoimmune disease of the hair follicle. Autoimmunity Reviews, 2006, 5, 64-69.	5.8	180
41	Alopecia Areata Induced in C3H/HeJ Mice by Interferon-Gamma: Evidence for Loss of Immune Privilege. Journal of Investigative Dermatology, 2005, 124, 288-289.	0.7	73
42	Aging of Human Epidermis: Reversal of Aging Changes Correlates With Reversal of Keratinocyte Fas Expression and Apoptosis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B411-B415.	3.6	39
43	Ageing of human epidermis: the role of apoptosis, Fas and telomerase. British Journal of Dermatology, 2004, 150, 56-63.	1.5	60
44	Transfer of alopecia areata in the human scalp graft/Prkdcscid (SCID) mouse system is characterized by a TH1 response. Clinical Immunology, 2003, 106, 181-187.	3.2	309
45	Mediation of Alopecia Areata by Cooperation Between CD4+ and CD8+ T Lymphocytes. Archives of Dermatology, 2002, 138, 916-22.	1.4	93
46	Psoriasis is Mediated by a Cutaneous Defect Triggered by Activated Immunocytes: Induction of Psoriasis by Cells with Natural Killer Receptors. Journal of Investigative Dermatology, 2002, 119, 384-391.	0.7	75
47	Smoking effect on skin wrinkling in the aged population. International Journal of Dermatology, 2001, 40, 431-433.	1.0	43
48	Melanocyte-Associated T Cell Epitopes Can Function as Autoantigens for Transfer of Alopecia Areata to Human Scalp Explants on Prkdcscid Mice. Journal of Investigative Dermatology, 2001, 117, 1357-1362.	0.7	130
49	New topical antiandrogenic formulations can stimulate hair growth in human bald scalp grafted onto mice. International Journal of Pharmaceutics, 2000, 194, 125-134.	5.2	28
50	Cytokine mRNA expression in normal skin of various age populations before and after engraftment onto nude mice. Acta Dermato-Venereologica, 1998, 78, 36-39.	1.3	1
51	Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice Journal of Clinical Investigation, 1998, 101, 62-67.	8.2	215
52	Favourable melanoma prognosis associated with the expression of the tumour necrosis factor receptor and the ??1??1 integrin: a preliminary report. Melanoma Research, 1997, 7, 486-495.	1.2	12
53	Capsaicin - an effective topical treatment in pain. International Journal of Dermatology, 1997, 36, 401-404.	1.0	33
54	In vivo effects of cytokines on psoriatic skin grafted on nude mice: involvement of the tumour necrosis factor (TNF) receptor. Clinical and Experimental Immunology, 1996, 106, 134-142.	2.6	13

#	Article	IF	CITATIONS
55	Antiproliferative effect of pentoxifylline on psoriatic and normal epidermis. In vitro and in vivo studies Acta Dermato-Venereologica, 1996, 76, 437-441.	1.3	14
56	Effect of Donor Age on Response of Skin Grafts to Gamma-interferon. Dermatology, 1995, 191, 99-103.	2.1	1
57	Dopa reaction of fetal melanocytes before and after skin transplantation on to nude mice. British Journal of Dermatology, 1995, 133, 884-889.	1.5	10
58	Possible role of cytokines in cellular proliferation of the skin transplanted onto nude mice. Archives of Dermatology, 1995, 131, 38-42.	1.4	2
59	IA induction by gut and epidermal cells of nude mice following administration of human lymphocytes. Revista Medico-chirurgicala A Societatii De Medici Si Naturalisti Din Iasi, 1995, 99, 163-70.	0.1	0
60	Effect of antiinsulin-like growth factor 1 on epidermal proliferation of human skin transplanted onto nude mice treated with growth hormone Endocrinology, 1994, 134, 229-232.	2.8	19
61	The Nude Mouse Model for the Study of Human Skin Disorders. Dermatology, 1994, 189, 5-8.	2.1	12
62	Effect of antiinsulin-like growth factor 1 on epidermal proliferation of human skin transplanted onto nude mice treated with growth hormone. Endocrinology, 1994, 134, 229-232.	2.8	5
63	Serum selenium in melanoma and epidermotropic cutaneous T-cell lymphoma Acta Dermato-Venereologica, 1994, 74, 90-92.	1.3	8
64	Response of Grafts from Patients with Alopecia Areata Transplanted onto Nude Mice, to Administration of Interferon-Î ³ . Clinical Immunology and Immunopathology, 1993, 66, 120-126.	2.0	23
65	Vitiliginous vs pigmented skin response to intradermal administration of interferon gamma. Archives of Dermatology, 1993, 129, 600-4.	1.4	0
66	The role of cyclosporine on Ia antigen expression on gut epithelium in nude mice. Israel Journal of Medical Sciences, 1993, 29, 609-12.	0.1	0
67	la Expression in Keratinocytes Following Ultraviolet Radiation. Scandinavian Journal of Immunology, 1992, 35, 321-325.	2.7	1
68	Failure of passive transfer of serum from patients with alopecia areata and alopecia universalis to inhibit hair growth in transplants of human scalp skin grafted on to nude mice. British Journal of Dermatology, 1992, 126, 166-171.	1.5	61
69	Aged versus young skin before and after transplantation onto nude mice. British Journal of Dermatology, 1991, 124, 168-171.	1.5	10
70	Topical cyclosporin induces hair growth in human split skin grafted onto nude mice. Acta Dermato-Venereologica, 1991, 71, 327-30.	1.3	1
71	Hair Growth in Human Split-Thickness Skin Grafts Transplanted onto Nude Rats: The Role of Ciclosporin. Dermatology, 1990, 181, 117-121.	2.1	9
72	Cyclosporin in Dermatologic Disorders. International Journal of Dermatology, 1989, 28, 423-425.	1.0	4

#	Article	IF	CITATIONS
73	The pathogenesis of lichen planus. British Journal of Dermatology, 1989, 120, 541-544.	1.5	26
74	Vitiligo and idiopathic guttate hypomelanosis. Repigmentation of skin following engraftment onto nude mice. Archives of Dermatology, 1989, 125, 1363-1366.	1.4	27
75	Topical cyclosporin A in alopecia areata. Acta Dermato-Venereologica, 1989, 69, 252-3.	1.3	4
76	The effect of topical cyclosporin on the immediate shedding of human scalp hair grafted onto nude mice. British Journal of Dermatology, 1988, 119, 767-770.	1.5	23
77	Toxic Epidermal Necrolysis After Excretory Pyelography International Journal of Dermatology, 1988, 27, 346-347.	1.0	17
78	EPIDERMAL LANGERHANS' CELLS IN GRANULOMA ANNULARE. Journal of Dermatology, 1985, 12, 232-236.	1.2	3
79	Coexistence of Kaposi's Sarcoma and Angioimmunoblastic Lymphadenopathy. The Journal of Dermatologic Surgery and Oncology, 1985, 11, 76-79.	0.8	10