Chris Geron

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4438428/chris-geron-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31
papers

5,758
citations

25
h-index

32
g-index

32
ext. papers

6,228
ext. citations

4.61
L-index

#	Paper	IF	Citations
31	Isoprene Emission Response to Drought and the Impact on Global Atmospheric Chemistry. <i>Atmospheric Environment</i> , 2018 , 183, 69-83	5.3	33
30	Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. <i>Science of the Total Environment</i> , 2017 , 595, 149-158	10.2	11
29	Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and field-based evaluation. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 3893-	-3 9 08	12
28	Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. <i>Chemosphere</i> , 2016 , 146, 8-21	8.4	10
27	Ecosystem-scale volatile organic compound fluxes during@n extreme drought in a broadleaf temperate forest@f the Missouri Ozarks (central USA). <i>Global Change Biology</i> , 2015 , 21, 3657-74	11.4	59
26	Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress. <i>Atmospheric Environment</i> , 2014 , 84, 314-322	5.3	47
25	Air emissions from organic soil burning on the coastal plain of North Carolina. <i>Atmospheric Environment</i> , 2013 , 64, 192-199	5.3	25
24	Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis. <i>Aerosol Science and Technology</i> , 2012 , 46, 127-137	3.4	65
23	Carbonaceous aerosol characteristics over a Pinus taeda plantation: Results from the CELTIC experiment. <i>Atmospheric Environment</i> , 2011 , 45, 794-801	5.3	8
22	Nitrous oxide emissions from the gulf of Mexico hypoxic zone. <i>Environmental Science & Environmental &</i>	10.3	20
21	Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA. <i>Atmospheric Environment</i> , 2009 , 43, 959-969	5.3	24
20	Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. <i>Atmospheric Environment</i> , 2006 , 40, 1645-1660	5.3	60
19	Estimating emissions from fires in North America for air quality modeling. <i>Atmospheric Environment</i> , 2006 , 40, 3419-3432	5.3	301
18	Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US. <i>Atmospheric Environment</i> , 2006 , 40, 4150-4157	5.3	111
17	N2O emissions from streams in the Neuse river watershed, North Carolina. <i>Environmental Science & Environmental & Environmenta</i>	10.3	50
16	Ozarks Isoprene Experiment (OZIE): Measurements and modeling of the Boprene volcanol <i>Journal of Geophysical Research</i> , 2005 , 110,		51
15	Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation. <i>Atmospheric Environment</i> , 2005 , 39, 381-390	5.3	47

LIST OF PUBLICATIONS

14	Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation. <i>Journal of Geophysical Research</i> , 2004 , 109,		193
13	Global Organic Emissions from Vegetation. Advances in Global Change Research, 2004, 115-170	1.2	49
12	Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. <i>Atmospheric Environment</i> , 2002 , 36, 3793-3802	5.3	85
11	Isoprene emission capacity for US tree species. <i>Atmospheric Environment</i> , 2001 , 35, 3341-3352	5.3	87
10	A review and synthesis of monoterpene speciation from forests in the United States. <i>Atmospheric Environment</i> , 2000 , 34, 1761-1781	5.3	217
9	Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. <i>Atmospheric Environment</i> , 2000 , 34, 2205-2230	5.3	524
8	Temporal variability in basal isoprene emission factor. <i>Tree Physiology</i> , 2000 , 20, 799-805	4.2	110
7	Biogenic volatile organic compound emissions (BVOCs). II. Landscape flux potentials from three continental sites in the U.S. <i>Chemosphere</i> , 1999 , 38, 2189-204	8.4	58
6	Biogenic volatile organic compound emissions (BVOCs). I. Identifications from three continental sites in the U.S. <i>Chemosphere</i> , 1999 , 38, 2163-87	8.4	122
5	Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site. Journal of Geophysical Research, 1998 , 103, 22397-22414		60
4	UNITED STATES LAND USE INVENTORY FOR ESTIMATING BIOGENIC OZONE PRECURSOR EMISSIONS 1997 , 7, 46-58		55
3	Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements. <i>Journal of Geophysical Research</i> , 1996 , 101, 1345-1359		116
2	Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. <i>Journal of Geophysical Research</i> , 1996 , 101, 18555-18567		126
1	A global model of natural volatile organic compound emissions. <i>Journal of Geophysical Research</i> , 1995 , 100, 8873		3022