Chris Geron

List of Publications by Citations

Source: https://exaly.com/author-pdf/4438428/chris-geron-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31 5,758 25 32 g-index

32 6,228 6.1 4.61 L-index

#	Paper	IF	Citations
31	A global model of natural volatile organic compound emissions. <i>Journal of Geophysical Research</i> , 1995 , 100, 8873		3022
30	Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. <i>Atmospheric Environment</i> , 2000 , 34, 2205-2230	5.3	524
29	Estimating emissions from fires in North America for air quality modeling. <i>Atmospheric Environment</i> , 2006 , 40, 3419-3432	5.3	301
28	A review and synthesis of monoterpene speciation from forests in the United States. <i>Atmospheric Environment</i> , 2000 , 34, 1761-1781	5.3	217
27	Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation. <i>Journal of Geophysical Research</i> , 2004 , 109,		193
26	Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. <i>Journal of Geophysical Research</i> , 1996 , 101, 18555-18567		126
25	Biogenic volatile organic compound emissions (BVOCs). I. Identifications from three continental sites in the U.S. <i>Chemosphere</i> , 1999 , 38, 2163-87	8.4	122
24	Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements. <i>Journal of Geophysical Research</i> , 1996 , 101, 1345-1359		116
23	Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US. <i>Atmospheric Environment</i> , 2006 , 40, 4150-4157	5.3	111
22	Temporal variability in basal isoprene emission factor. <i>Tree Physiology</i> , 2000 , 20, 799-805	4.2	110
21	Isoprene emission capacity for US tree species. <i>Atmospheric Environment</i> , 2001 , 35, 3341-3352	5.3	87
20	Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. <i>Atmospheric Environment</i> , 2002 , 36, 3793-3802	5.3	85
19	Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis. <i>Aerosol Science and Technology</i> , 2012 , 46, 127-137	3.4	65
18	Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. <i>Atmospheric Environment</i> , 2006 , 40, 1645-1660	5.3	60
17	Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site. <i>Journal of Geophysical Research</i> , 1998 , 103, 22397-22414		60
16	Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA). Global Change Biology, 2015, 21, 3657-74	11.4	59
15	Biogenic volatile organic compound emissions (BVOCs). II. Landscape flux potentials from three continental sites in the U.S. <i>Chemosphere</i> , 1999 , 38, 2189-204	8.4	58

LIST OF PUBLICATIONS

14	EMISSIONS 1997 , 7, 46-58		55
13	Ozarks Isoprene Experiment (OZIE): Measurements and modeling of the Boprene volcano Journal of Geophysical Research, 2005, 110,		51
12	N2O emissions from streams in the Neuse river watershed, North Carolina. <i>Environmental Science & Environmental Science</i>	10.3	50
11	Global Organic Emissions from Vegetation. Advances in Global Change Research, 2004, 115-170	1.2	49
10	Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress. <i>Atmospheric Environment</i> , 2014 , 84, 314-322	5.3	47
9	Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation. <i>Atmospheric Environment</i> , 2005 , 39, 381-390	5.3	47
8	Isoprene Emission Response to Drought and the Impact on Global Atmospheric Chemistry. <i>Atmospheric Environment</i> , 2018 , 183, 69-83	5.3	33
7	Air emissions from organic soil burning on the coastal plain of North Carolina. <i>Atmospheric Environment</i> , 2013 , 64, 192-199	5.3	25
6	Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA. <i>Atmospheric Environment</i> , 2009 , 43, 959-969	5.3	24
5	Nitrous oxide emissions from the gulf of Mexico hypoxic zone. <i>Environmental Science & Environmental &</i>	10.3	20
4	Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and field-based evaluation. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 3893-3	3 9 08	12
3	Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. <i>Science of the Total Environment</i> , 2017 , 595, 149-158	10.2	11
2	Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. <i>Chemosphere</i> , 2016 , 146, 8-21	8.4	10
1	Carbonaceous aerosol characteristics over a Pinus taeda plantation: Results from the CELTIC experiment. <i>Atmospheric Environment</i> , 2011 , 45, 794-801	5.3	8