List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 2013, 11, 251-259.	1.9	980
2	A Virulent Strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) Prevails after Varroa destructor-Mediated, or In Vitro, Transmission. PLoS Pathogens, 2014, 10, e1004230.	2.1	294
3	Standard methods for virus research in <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-56.	0.7	230
4	Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11115-11120.	3.3	162
5	Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. Journal of General Virology, 2011, 92, 156-161.	1.3	140
6	Diverse Groups of Plant RNA and DNA Viruses Share Related Movement Proteins that may Possess Chaperone-like Activity. Journal of General Virology, 1991, 72, 2895-2903.	1.3	139
7	Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO Journal, 2007, 26, 2169-2179.	3.5	138
8	ICTV Virus Taxonomy Profile: Iflaviridae. Journal of General Virology, 2017, 98, 527-528.	1.3	109
9	Recent spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. Scientific Reports, 2017, 7, 17447.	1.6	108
10	A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1212-1217.	3.3	107
11	Densovirus induces winged morphs in asexual clones of the rosy apple aphid, <i>Dysaphis plantaginea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8465-8470.	3.3	86
12	Intracellular Location of Two Groundnut Rosette Umbravirus Proteins Delivered by PVX and TMV Vectors. Virology, 1998, 242, 303-313.	1.1	83
13	Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Scientific Reports, 2019, 9, 12445.	1.6	79
14	ICTV Virus Taxonomy Profile: Dicistroviridae. Journal of General Virology, 2017, 98, 355-356.	1.3	79
15	Umbravirus Gene Expression Helps Potato leafroll virus to Invade Mesophyll Tissues and to be Transmitted Mechanically between Plants. Virology, 2001, 286, 363-372.	1.1	76
16	Dynamic evolution in the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using reverse genetics. PLoS Biology, 2019, 17, e3000502.	2.6	75
17	An Umbraviral Protein, Involved in Long-Distance RNA Movement, Binds Viral RNA and Forms Unique, Protective Ribonucleoprotein Complexes. Journal of Virology, 2003, 77, 3031-3040.	1.5	72
18	A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees. PLoS Pathogens, 2012, 8, e1003083.	2.1	70

#	Article	IF	CITATIONS
19	Nucleotide Sequence of Shallot Virus X RNA Reveals a 5'-proximal Cistron Closely Related to Those of Potexviruses and a Unique Arrangement of the 3'-proximal Cistrons. Journal of General Virology, 1992, 73, 2553-2560.	1.3	63
20	The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ, 2016, 4, e1591.	0.9	59
21	Roles of Dicer-Like Proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing. Plant Physiology, 2017, 174, 1067-1081.	2.3	57
22	Umbravirus-Encoded Proteins both Stabilize Heterologous Viral RNA and Mediate Its Systemic Movement in Some Plant Species. Virology, 2001, 288, 391-400.	1.1	52
23	The C-terminal 33â€amino acids of the cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. Journal of General Virology, 2004, 85, 221-230.	1.3	49
24	Identification of a nuclear localization signal and nuclear export signal of the umbraviral long-distance RNA movement protein. Journal of General Virology, 2004, 85, 1329-1333.	1.3	47
25	A Genetic Network for Systemic RNA Silencing in Plants. Plant Physiology, 2018, 176, 2700-2719.	2.3	47
26	Host-Specific Cell-to-Cell and Long-Distance Movements of Cucumber Mosaic Virus Are Facilitated by the Movement Protein of Groundnut Rosette Virus. Virology, 1999, 260, 98-108.	1.1	46
27	Nucleolar localization of potato leafroll virus capsid proteins. Journal of General Virology, 2005, 86, 2891-2896.	1.3	45
28	A novel virus isolated from the aphid Brevicoryne brassicae with similarity to Hymenoptera picorna-like viruses. Journal of General Virology, 2007, 88, 2590-2595.	1.3	44
29	Evidence for and against deformed wing virus spillover from honey bees to bumble bees: a reverse genetic analysis. Scientific Reports, 2020, 10, 16847.	1.6	39
30	Mechanical transmission of Potato leafroll virus. Journal of General Virology, 2000, 81, 2791-2795.	1.3	39
31	Tagging Potato leafroll virus with the jellyfish green fluorescent protein gene. Journal of General Virology, 2000, 81, 617-626.	1.3	37
32	Umbravirus-encoded movement protein induces tubule formation on the surface of protoplasts and binds RNA incompletely and non-cooperatively. Journal of General Virology, 2001, 82, 2579-2588.	1.3	37
33	Satellite RNA Is Essential for Encapsidation of Groundnut Rosette Umbravirus RNA by Groundnut Rosette Assistor Luteovirus Coat Protein. Virology, 1999, 254, 105-114.	1.1	36
34	Cell-to-Cell, but Not Long-Distance, Spread of RNA Silencing That Is Induced in Individual Epidermal Cells. Journal of Virology, 2004, 78, 3149-3154.	1.5	33
35	Invertebrate RNA virus diversity from a taxonomic point of view. Journal of Invertebrate Pathology, 2017, 147, 37-50.	1.5	29
36	Nucleotide sequence of carnation ringspot dianthovirus RNA-1. Journal of General Virology, 1994, 75, 243-247	1.3	28

#	Article	IF	CITATIONS
37	Two Distinct Mechanisms of Transgenic Resistance Mediated by Groundnut Rosette Virus Satellite RNA Sequences. Molecular Plant-Microbe Interactions, 1998, 11, 367-374.	1.4	28
38	Nucleotide Sequence of RNA from the Sobemovirus Found in Infected Cocksfoot Shows a Luteovirus-Like Arrangement of the Putative Replicase and Protease Genes. Phytopathology, 1996, 86, 391.	1.1	27
39	Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthamiana. Scientific Reports, 2012, 2, 467.	1.6	26
40	Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from an artificial diet. PLoS ONE, 2020, 15, e0242688.	1.1	25
41	Development of a Honey Bee RNA Virus Vector Based on the Genome of a Deformed Wing Virus. Viruses, 2020, 12, 374.	1.5	23
42	Pupal cannibalism by worker honey bees contributes to the spread of deformed wing virus. Scientific Reports, 2021, 11, 8989.	1.6	22
43	Use of Highly Conserved Motifs in Plant Virus RNA Polymerases as the Tags for Specific Detection of Carmovirus-Related RNA-Dependent RNA Polymerase Genes. Virology, 1995, 207, 312-315.	1.1	20
44	Tomato Cell Death Mediated By Complementary Plant Viral Satellite RNA Sequences. Molecular Plant-Microbe Interactions, 1998, 11, 1214-1222.	1.4	20
45	Evidence for RNA-mediated defence effects on the accumulation of Potato leafroll virus. Journal of General Virology, 2001, 82, 3099-3106.	1.3	18
46	Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt. Virology Journal, 2022, 19, 12.	1.4	17
47	Influence of viral genes on the cell-to-cell spread of RNA silencing. Journal of Experimental Botany, 2008, 59, 2803-2813.	2.4	16
48	ICTV Virus Taxonomy Profile: Solinviviridae. Journal of General Virology, 2019, 100, 736-737.	1.3	15
49	Suppression of local RNA silencing is not sufficient to promote cell-to-cell movement ofTurnip crinkle virusinNicotiana benthamiana. Plant Signaling and Behavior, 2009, 4, 15-22.	1.2	12
50	ICTV Virus Taxonomy Profile: Polycipiviridae. Journal of General Virology, 2019, 100, 554-555.	1.3	12
51	Honeybee intestines retain low yeast titers, but no bacterial mutualists, at emergence. Yeast, 2022, 39, 95-107.	0.8	11
52	A single amino acid change in a geminiviral Rep protein differentiates between triggering a plant defence response and initiating viral DNA replication. Journal of General Virology, 2008, 89, 2636-2641.	1.3	9
53	Beeporter: Tools for highâ€throughput analyses of pollinatorâ€virus infections. Molecular Ecology Resources, 2022, 22, 978-987.	2.2	9
54	MosaicSolver: a tool for determining recombinants of viral genomes from pileup data. Nucleic Acids Research, 2014, 42, e123-e123.	6.5	6

#	Article	IF	CITATIONS
55	Error correction and diversity analysis of population mixtures determined by NGS. PeerJ, 2014, 2, e645.	0.9	4
56	Iflavirus (Deformed Wing Virus). , 2016, , 37-46.		2
57	Construction of Infectious cDNA Clones for RNA Viruses: Turnip Crinkle Virus. Methods in Molecular Biology, 2008, 451, 491-502.	0.4	1
58	Special Issue "Evolution and Diversity of Insect Viruses― Viruses, 2022, 14, 2.	1.5	1
59	Umbraviruses (Tombusviridae). , 2021, , 827-832.		0