Seva Catherine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Glycoprotein M6a Is Associated with Invasiveness and Radioresistance of Glioblastoma Stem Cells. Cells, 2022, 11, 2128.	4.1	6
2	The m6A RNA Demethylase ALKBH5 Promotes Radioresistance and Invasion Capability of Glioma Stem Cells. Cancers, 2021, 13, 40.	3.7	59
3	Translation reprogramming by eIF3 linked to glioblastoma resistance. NAR Cancer, 2020, 2, zcaa020.	3.1	9
4	Alpha6-Integrin Regulates FGFR1 Expression through the ZEB1/YAP1 Transcription Complex in Glioblastoma Stem Cells Resulting in Enhanced Proliferation and Stemness. Cancers, 2019, 11, 406.	3.7	29
5	By modulating α2β1 integrin signalling, gastrin increases adhesion oF ACS-GR gastric cancer cells. Experimental Cell Research, 2018, 362, 498-503.	2.6	1
6	Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death and Disease, 2018, 9, 872.	6.3	31
7	The Bad the Good and eIF3e INT6. Frontiers in Bioscience - Landmark, 2017, 22, 1-20.	3.0	15
8	Targeting progastrin enhances radiosensitization of colorectal cancer cells. Oncotarget, 2017, 8, 58587-58600.	1.8	6
9	Progastrin a new pro-angiogenic factor in colorectal cancer. Oncogene, 2015, 34, 3120-3130.	5.9	21
10	Int6/eIF3e Is Essential for Proliferation and Survival of Human Glioblastoma Cells. International Journal of Molecular Sciences, 2014, 15, 2172-2190.	4.1	34
11	Activation of pro-oncogenic pathways in colorectal hyperplastic polyps. BMC Cancer, 2013, 13, 531.	2.6	3
12	A New Biomarker That Predicts Colonic Neoplasia Outcome in Patients with Hyperplastic Colonic Polyps. Cancer Prevention Research, 2012, 5, 675-684.	1.5	21
13	Identification of the F1-ATPase at the Cell Surface of Colonic Epithelial Cells. Journal of Biological Chemistry, 2012, 287, 41458-41468.	3.4	14
14	Abstract 1073: Cell surface F1-ATPase, a new potential target in colorectal cancer. , 2012, , .		0
15	Phosphorylation of spinal Nâ€methylâ€ <scp>d</scp> â€aspartate receptor NR1 subunits by extracellular signalâ€regulated kinase in dorsal horn neurons and microglia contributes to diabetesâ€induced painful neuropathy. European Journal of Pain, 2011, 15, 169.e1-169.e12.	2.8	35
16	αVintegrin: A new gastrin target in human pancreatic cancer cells. World Journal of Gastroenterology, 2011, 17, 4488.	3.3	15
17	A gastrin precursor, gastrinâ€g y, upregulates VEGF expression in colonic epithelial cells through an HIFâ€1â€independent mechanism. International Journal of Cancer, 2010, 126, 2847-2857.	5.1	23
18	Involvement of Cholecystokinin 2 Receptor in Food Intake Regulation: Hyperphagia and Increased Fat Deposition in Cholecystokinin 2 Receptor-Deficient Mice. Endocrinology, 2007, 148, 1039-1049.	2.8	73

SEVA CATHERINE

#	Article	IF	CITATIONS
19	Cholecystokinin and Gastrin Receptors. Physiological Reviews, 2006, 86, 805-847.	28.8	421
20	An ITIM-like motif within the CCK2 receptor sequence required for interaction with SHP-2 and the activation of the AKT pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1098-1107.	4.1	18
21	Glycine-extended gastrin activates two independent tyrosine-kinases in upstream of p85/p110 phosphatidylinositol 3-kinase in human colonic tumour cells. World Journal of Gastroenterology, 2006, 12, 1859.	3.3	9
22	Mechanism for Src activation by the CCK2 receptor: Patho-physiological functions of this receptor in pancreas. World Journal of Gastroenterology, 2006, 12, 4498.	3.3	12
23	Transgenic expression of CCK2 receptors sensitizes murine pancreatic acinar cells to carcinogen-induced preneoplastic lesions formation. International Journal of Cancer, 2005, 115, 46-54.	5.1	12
24	Signaling Pathways Associated with Colonic Mucosa Hyperproliferation in Mice Overexpressing Gastrin Precursors. Cancer Research, 2005, 65, 2770-2777.	0.9	48
25	Essential Interaction of Egr-1 at an Islet-specific Response Element for Basal and Gastrin-dependent Glucagon Gene Transactivation in Pancreatic α-Cells. Journal of Biological Chemistry, 2005, 280, 7976-7984.	3.4	25
26	A Novel Mechanism for JAK2 Activation by a G Protein-coupled Receptor, the CCK2R. Journal of Biological Chemistry, 2005, 280, 10710-10715.	3.4	61
27	Molecular Mechanism Underlying Partial and Full Agonism Mediated by the Human Cholecystokinin-1 Receptor. Journal of Biological Chemistry, 2005, 280, 10664-10674.	3.4	27
28	Modeled Structure of a G-Protein-Coupled Receptor:  The Cholecystokinin-1 Receptor. Journal of Medicinal Chemistry, 2005, 48, 180-191.	6.4	43
29	The G-protein-coupled CCK2 receptor associates with phospholipase Cl ³ 1. FEBS Letters, 2004, 568, 89-93.	2.8	13
30	Expression of Cholecystokinin-2/Gastrin Receptor in the Murine Pancreas Modulates Cell Adhesion and Cell Differentiation in Vivo. American Journal of Pathology, 2004, 165, 2135-2145.	3.8	18
31	Involvement of JAK2 upstream of the PI 3-kinase in cell–cell adhesion regulation by gastrin. Experimental Cell Research, 2004, 301, 128-138.	2.6	41
32	Mechanism of JAK2 activation by the G protein coupled receptor CCK2-R. Gastroenterology, 2003, 124, A78.	1.3	0
33	Gastrin mediated cholecystokinin-2 receptor activation induces loss of cell adhesion and scattering in epithelial MDCK cells. Oncogene, 2002, 21, 7656-7670.	5.9	44
34	Gastrin-induced DNA synthesis requires p38-MAPK activation via PKC/Ca2+ and Src-dependent mechanisms. FEBS Letters, 2001, 496, 25-30.	2.8	35
35	Activation of c-Jun N-terminal kinase 1 (JNK-1) after amino acid deficiency in HeLa cells. Cellular Signalling, 2001, 13, 417-423.	3.6	8
36	Mutation of Asn-391 within the Conserved NPXXY Motif of the Cholecystokinin B Receptor Abolishes Gq Protein Activation without Affecting Its Association with the Receptor. Journal of Biological Chemistry, 2000, 275, 17321-17327.	3.4	52

SEVA CATHERINE

#	Article	IF	CITATIONS
37	P60-SRC and p125-FAK are potential mediators of PI 3-kinase activation by glycine-extended gastrin precursors. Gastroenterology, 2000, 118, A437.	1.3	Ο
38	Mutation of ASN391 within the highly conserved NPXXY motif of the cholecystokinin B receptor abolishes GQ protein activation without affecting its association with the receptor. Gastroenterology, 2000, 118, A305.	1.3	0
39	Src-family tyrosine kinases mediate c-jun amino-terminal kinase (JNK) activation by CCKB receptors. Gastroenterology, 2000, 118, A92.	1.3	Ο
40	Src-family Tyrosine Kinases in Activation of ERK-1 and p85/p110-phosphatidylinositol 3-Kinase by G/CCKBReceptors. Journal of Biological Chemistry, 1999, 274, 20657-20663.	3.4	103
41	Gastrin stimulates the formation of a p60Src/p125FAKcomplex upstream of the phosphatidylinositol 3-kinase signaling pathway. FEBS Letters, 1999, 445, 251-255.	2.8	34
42	Gastrin induces phosphorylation of eIF4E binding protein 1 and translation initiation of ornithine decarboxylase mRNA. Oncogene, 1998, 16, 2219-2227.	5.9	35
43	Ca2+ and protein kinase C-dependent mechanisms involved in gastrin-induced Shc/Grb2 complex formation and P44-mitogen-activated protein kinase activation. Biochemical Journal, 1997, 325, 383-389.	3.7	47
44	Tyrosine Phosphorylation of Insulin Receptor Substrate-1 and Activation of the PI-3-Kinase Pathway by Glycine-Extended Gastrin Precursors. Biochemical and Biophysical Research Communications, 1997, 236, 687-692.	2.1	26
45	Wortmannin-Sensitive Activation of p70S6-Kinase and MAP-Kinase by the G Protein-Coupled Receptor, G/CCKB. Biochemical and Biophysical Research Communications, 1997, 238, 202-206.	2.1	29
46	Gastrin induces tyrosine phosphorylation of Shc proteins and their association with the Grb2/Sos complex. FEBS Letters, 1996, 378, 74-78.	2.8	42
47	Gastrin Stimulates Tyrosine Phosphorylation of Insulin Receptor Substrate 1 and Its Association with Grb2 and the Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1996, 271, 26356-26361.	3.4	71
48	Gastrin and Glycine-extended Progastrin Processing Intermediates Induce Different Programs of Early Gene Activation. Journal of Biological Chemistry, 1995, 270, 28337-28341.	3.4	79
49	Glycine-extended Progastrin Processing Intermediates Induce H+,K+-ATPase α-Subunit Gene Expression through a Novel Receptor. Journal of Biological Chemistry, 1995, 270, 11155-11160.	3.4	40
50	Stimulation of rat pancreatic tumoral AR4-2J cell proliferation by Pituitary Adenylate cyclase-activating peptide. Gastroenterology, 1992, 103, 1002-1008.	1.3	49
51	Putrescine and spermidine uptake is regulated by proliferation and dexamethasone treatment in AR4-2J cells. International Journal of Cancer, 1991, 49, 577-581.	5.1	7
52	Gastrin. The AFCS-nature Molecule Pages, 0, , .	0.2	0