
## Nathalie Tanchoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438170/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                  | IF   | CITATIONS |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1 | Hydrocarbon Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr). Journal of the American Chemical Society, 2008, 130, 16926-16932.                        | 13.7 | 244       |
| 2 | Boronic acid-modified alginate enables direct formation of injectable, self-healing and multistimuli-responsive hydrogels. Chemical Communications, 2017, 53, 3350-3353. | 4.1  | 139       |
| 3 | Microreactors for Dynamic, High Throughput Screening of Fluid/Liquid Molecular Catalysis.<br>Angewandte Chemie - International Edition, 2000, 39, 3442-3445.             | 13.8 | 132       |
| 4 | Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catalysis Today, 2009, 147, 231-238.                                                           | 4.4  | 117       |
| 5 | Etherification of glycerol with ethanol over solid acid catalysts. Green Chemistry, 2009, 11, 1256.                                                                      | 9.0  | 106       |
|   |                                                                                                                                                                          |      |           |

6 Catalytic Conversion of Ethanol into Butanol over M–Mg–Al Mixed Oxide Catalysts (MÂ=ÂPd, Ag, Mn, Fe,) Tj ETOq0 0 0 rgBT /Overl

| 7  | New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation.<br>Applied Catalysis A: General, 2009, 363, 135-142.                                                                              | 4.3  | 84 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 8  | Kinetics of the selective catalytic reduction of NO by NH3 on a Cu-faujasite catalyst. Applied Catalysis<br>B: Environmental, 2004, 52, 251-257.                                                                                 | 20.2 | 83 |
| 9  | Self-healing alginate–gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters. Materials Chemistry Frontiers, 2017, 1, 73-79.                                                                    | 5.9  | 77 |
| 10 | Study and modelling of kinetics of the oxidation of VOC catalyzed by nanosized Cu–Mn spinels prepared via an alginate route. Applied Catalysis A: General, 2015, 504, 203-210.                                                   | 4.3  | 75 |
| 11 | Transition metal-containing mixed oxides catalysts derived from LDH precursors for short-chain hydrocarbons oxidation. Applied Catalysis A: General, 2011, 395, 78-86.                                                           | 4.3  | 66 |
| 12 | Adsorption of C5–C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr): A manometric study. Microporous and Mesoporous Materials, 2010, 134, 134-140.                                                                  | 4.4  | 65 |
| 13 | Heterogeneous catalysis and confinement effects. Applied Catalysis A: General, 2006, 307, 51-57.                                                                                                                                 | 4.3  | 54 |
| 14 | Chitosan Aerogel Beads as a Heterogeneous Organocatalyst for the Asymmetric Aldol Reaction in the<br>Presence of Water: An Assessment of the Effect of Additives. European Journal of Organic Chemistry,<br>2013, 2013, 588-594. | 2.4  | 51 |
| 15 | The adsorption of hexane over MCM-41 type materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 1-8.                                                                                           | 4.7  | 48 |
| 16 | Mixed-Oxide Catalysts with Spinel Structure for the Valorization of Biomass: The Chemical-Loop<br>Reforming of Bioethanol. Catalysts, 2018, 8, 332.                                                                              | 3.5  | 46 |
| 17 | A Macrothermodynamic Approach to the Limit of Reversible Capillary Condensation. Langmuir, 2005, 21, 8560-8564.                                                                                                                  | 3.5  | 39 |
| 18 | Total oxidation of methane over rare earth cation-containing mixed oxides derived from LDH precursors. Applied Catalysis A: General, 2013, 464-465, 20-27.                                                                       | 4.3  | 37 |

NATHALIE TANCHOUX

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sodium and acidic alginate foams with hierarchical porosity: Preparation, characterization and efficiency as a dye adsorbent. Carbohydrate Polymers, 2017, 178, 78-85.                                                                            | 10.2 | 35        |
| 20 | Study of n-hexane adsorption in MCM-41 mesoporous materials: a scaling effect approach of capillary condensation processes. New Journal of Chemistry, 2004, 28, 874.                                                                              | 2.8  | 34        |
| 21 | Towards an improved process for hydrogen production: the chemical-loop reforming of ethanol.<br>Green Chemistry, 2016, 18, 1038-1050.                                                                                                             | 9.0  | 34        |
| 22 | Spinel Mixed Oxides for Chemical-Loop Reforming: From Solid State to Potential Application. Studies in Surface Science and Catalysis, 2019, 178, 281-302.                                                                                         | 1.5  | 34        |
| 23 | Confinements effects in MCM-41-type materials: Comparison of the energetics of n-hexane and 1-hexene adsorption. Microporous and Mesoporous Materials, 2005, 86, 354-363.                                                                         | 4.4  | 33        |
| 24 | Alginic acid aerogel: a heterogeneous BrÃ,nsted acid promoter for the direct Mannich reaction. New<br>Journal of Chemistry, 2015, 39, 4222-4226.                                                                                                  | 2.8  | 29        |
| 25 | Hydrogenation of 2-butyne-1,4-diol on supported Pd catalysts obtained from LDH precursors.<br>Microporous and Mesoporous Materials, 2007, 99, 118-125.                                                                                            | 4.4  | 27        |
| 26 | Total oxidation of methane over supported CuO: Influence of the Mg x Al y O support. Applied<br>Catalysis A: General, 2017, 538, 81-90.                                                                                                           | 4.3  | 27        |
| 27 | New reactors and methods for the investigation of homogeneous catalysis. Journal of<br>Organometallic Chemistry, 1998, 567, 143-150.                                                                                                              | 1.8  | 23        |
| 28 | Effect of non-linear kinetics on the enantioselectivity in the H-transfer asymmetric homogeneous<br>reduction of arylketones with a rhodium diamine catalyst. Tetrahedron: Asymmetry, 1998, 9, 3677-3686.                                         | 1.8  | 20        |
| 29 | Confinement and curvature effects as a tool for selectivity orientation in heterogeneous catalysis:<br>Isomerisation of n-hexene over MCM-41-type catalysts. Journal of Molecular Catalysis A, 2009, 305, 8-15.                                   | 4.8  | 19        |
| 30 | New mixed lanthanum- and alkaline-earth cation-containing basic catalysts obtained by an alginate route. Catalysis Today, 2012, 189, 28-34.                                                                                                       | 4.4  | 16        |
| 31 | Copper-nickel mixed oxide catalysts from layered double hydroxides for the hydrogen-transfer valorisation of lignin in organosolv pulping. Applied Catalysis A: General, 2021, 609, 117929.                                                       | 4.3  | 16        |
| 32 | Propane Oxidative Dehydrogenation Over Ln–Mg–Al–O Catalysts (LnÂ=ÂCe, Sm, Dy, Yb). Catalysis Letters,<br>2009, 131, 250-257.                                                                                                                      | 2.6  | 15        |
| 33 | Structural Changes of Binary/Ternary Spinel Oxides During Ethanol Anaerobic Decomposition.<br>ChemCatChem, 2017, 9, 2219-2230.                                                                                                                    | 3.7  | 15        |
| 34 | Dynamic methods and new reactors for liquid phase molecular catalysis. Catalysis Today, 2001, 66, 145-155.                                                                                                                                        | 4.4  | 14        |
| 35 | Synthesis of TiO2–ZrO2 Mixed Oxides via the Alginate Route: Application in the Ru Catalytic<br>Hydrogenation of Levulinic Acid to Gamma-Valerolactone. Energies, 2019, 12, 4706.                                                                  | 3.1  | 12        |
| 36 | Concomitant use of liquid–liquid batch and continuous plug flow reactors for kinetic model<br>discrimination. Application to the Rh/TPPTS catalysed reduction of the C–C double bond in<br>dimethylitaconate. Catalysis Today, 1999, 48, 211-219. | 4.4  | 11        |

NATHALIE TANCHOUX

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Keratin Protein-Catalyzed Nitroaldol (Henry) Reaction and Comparison with Other Biopolymers.<br>Molecules, 2016, 21, 1122.                                                                                                                             | 3.8 | 11        |
| 38 | Adsorption of a Chiral Amine on Alginate Gel Beads and Evaluation of its Efficiency as Heterogeneous<br>Enantioselective Catalyst. European Journal of Organic Chemistry, 2019, 2019, 3842-3849.                                                       | 2.4 | 11        |
| 39 | Heterogeneous Catalysis as a Tool for Production of Aromatic Compounds From Lignin. Studies in Surface Science and Catalysis, 2019, 178, 257-275.                                                                                                      | 1.5 | 11        |
| 40 | New Evidence of Confinement Effects in Mesoporous Materials and the Definition of Confined Pitzer<br>Acentric Factors. Journal of Physical Chemistry B, 2005, 109, 16415-16420.                                                                        | 2.6 | 10        |
| 41 | Alginate: A Versatile Biopolymer for Functional Advanced Materials for Catalysis. Studies in Surface<br>Science and Catalysis, 2019, , 357-375.                                                                                                        | 1.5 | 10        |
| 42 | Blue Chemistry. Marine Polysaccharide Biopolymers in Asymmetric Catalysis: Challenges and<br>Opportunities. European Journal of Organic Chemistry, 2020, 2020, 3779-3795.                                                                              | 2.4 | 10        |
| 43 | Transition Metal B-Site Substitutions in LaAlO3 Perovskites Reorient Bio-Ethanol Conversion Reactions. Catalysts, 2021, 11, 344.                                                                                                                       | 3.5 | 9         |
| 44 | Kinetic and Mechanistic Study of the H-Transfer Reduction of Dimethyl Itaconate by a Rh/TPPTS<br>Catalyst under Biphasic Conditions: Evidence for a Rhodametallacycle Intermediate. European Journal<br>of Inorganic Chemistry, 2000, 2000, 1495-1502. | 2.0 | 8         |
| 45 | Structural modifications of calcium based catalysts by non-thermal plasma in the CO2 reforming of CH4 and the influence of water. Journal of CO2 Utilization, 2020, 35, 79-89.                                                                         | 6.8 | 8         |
| 46 | Confinement at nanometer scale: why and how?. Studies in Surface Science and Catalysis, 2002, ,<br>1057-1066.                                                                                                                                          | 1.5 | 6         |
| 47 | Condensation enthalpies of n-hexane in micelle-templated mesoporous silicas. Journal of Porous<br>Materials, 2007, 14, 279-284.                                                                                                                        | 2.6 | 5         |
| 48 | Modulating Properties of Pure ZrO <sub>2</sub> for Structure–activity Relationships in Acidâ€base<br>Catalysis: Contribution of the Alginate Preparation Route. ChemCatChem, 2017, 9, 2358-2365.                                                       | 3.7 | 5         |
| 49 | Adsorption and confinement of n-butyraldehyde by porous materials followed by CIR spectrometry.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 92-98.                                                                 | 4.7 | 4         |
| 50 | The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects<br>ChemCatChem, 2017, 9, 2029-2064.                                                                                                                 | 3.7 | 2         |
| 51 | On the R&D Landscape Evolution in Catalytic Upgrading of Biomass. Studies in Surface Science and Catalysis, 2019, , 149-171.                                                                                                                           | 1.5 | 2         |
| 52 | Supercritical Carbon Dioxide as an Environmentally Benign Reaction Medium for Chemical Synthesis.<br>ChemInform, 2003, 34, no.                                                                                                                         | 0.0 | 0         |
| 53 | Competition between organics adsorbed in mesoporous MCM-41 materials: predictions for heterogeneous catalysis. Studies in Surface Science and Catalysis, 2005, 156, 643-648.                                                                           | 1.5 | Ο         |
| 54 | The selective adsorption of n-alkanes over breathing metal organic frameworks. Studies in Surface<br>Science and Catalysis, 2007, , 855-860.                                                                                                           | 1.5 | 0         |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evidences of surface curvature effects in mesoporous materials through the study of 1-hexene isomerization. Studies in Surface Science and Catalysis, 2007, , 1104-1110. | 1.5 | Ο         |
| 56 | Editorial on Special Issues "Aerogels―and "Aerogels 2018― Gels, 2020, 6, 19.                                                                                             | 4.5 | 0         |

Editorial on Special Issues "Aerogels―and "Aerogels 2018― Gels, 2020, 6, 19. 56