Kakhramon Davranov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4438120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 2011, 47, 197-205.	2.3	159
2	Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria. Saudi Journal of Biological Sciences, 2017, 24, 1601-1608.	1.8	98
3	Co-Inoculation of Rhizobacteria and Biochar Application Improves Growth and Nutrientsin Soybean and Enriches Soil Nutrients and Enzymes. Agronomy, 2020, 10, 1142.	1.3	70
4	Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Scientific Reports, 2021, 11, 22081.	1.6	58
5	Antioxidant efficiency of lycopene on oxidative stress - induced damage in bovine spermatozoa. Journal of Animal Science and Biotechnology, 2016, 7, 50.	2.1	38
6	Purification and characterization of aPenicillium sp. lipase which discriminates against diglycerides. Lipids, 1996, 31, 379-384.	0.7	32
7	Detection and quantification of the nifH gene in shoot and root of cucumber plants. Canadian Journal of Microbiology, 2006, 52, 731-739.	0.8	32
8	The Use of Bradyrhizobium to Enhance Growth and Yield of Soybean in Calcareous Soil in Uzbekistan. Journal of Plant Growth Regulation, 2004, 23, 54.	2.8	29
9	Growth and yield of soybean varieties inoculated with Bradyrhizobium spp in N-deficient calcareous soils. Biology and Fertility of Soils, 2004, 40, 144-146.	2.3	27
10	Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits. Journal of Arid Land, 2020, 12, 730-740.	0.9	26
11	Allelopathic effects of the aqueous extract of Rhazya stricta on growth and metabolism of Salsola villosa. Plant Biosystems, 2018, 152, 1263-1273.	0.8	15
12	Diversity and Plant Growth-Promoting Ability of Endophytic, Halotolerant Bacteria Associated with Tetragonia tetragonioides (Pall.) Kuntze. Plants, 2022, 11, 49.	1.6	13
13	Effects of nutrient medium composition and temperature on the germination of conidia and the entomopathogenic activity of the fungi Beauveria bassiana and Metarhizium anisopliae. Applied Biochemistry and Microbiology, 2006, 42, 72-76.	0.3	12
14	A glimpse of the prokaryotic diversity of the Large Aral Sea reveals novel extremophilic bacterial and archaeal groups. MicrobiologyOpen, 2019, 8, e00850.	1.2	12
15	Formation of Ag/AgCl nanoparticles in the matrix of the exopolysaccharide of a diazotrophic strain Azotobacter chroococcum XU1. Microbiology, 2017, 86, 197-201.	0.5	11
16	Diversity and biological activity of culturable endophytic bacteria associated with marigold (<i>Calendula officinalis</i> L.). AIMS Microbiology, 2021, 7, 336-353.	1.0	11
17	Medicinal plants with phytotoxic activity harbour endophytic bacteria with plant growth inhibitory properties. Environmental Sustainability, 2018, 1, 209-215.	1.4	10
18	Response of Soybean to Hydrochar-Based Rhizobium Inoculation in Loamy Sandy Soil. Microorganisms, 2020, 8, 1674.	1.6	10

#	Article	IF	CITATIONS
19	THE IN VITRO EFFECT OF ELDERBERRY (SAMBUCUS NIGRA) EXTRACT ON THE ACTIVITY AND OXIDATIVE PROFILE OF BOVINE SPERMATOZOA. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1319-1322.	0.4	6
20	The Insecticidal Activity of Bacillus thuringiensisCells. Applied Biochemistry and Microbiology, 2001, 37, 596-598.	0.3	5
21	Conditions for Cultivation of the Fungus Penicillium melinii UzLM-4 and Its Biosynthesis of Lipases. Applied Biochemistry and Microbiology, 2003, 39, 40-43.	0.3	5
22	Antioxidant properties of cumin (Bunium persicum Boiss.) extract and its protective role against abiotic stress tested by microRNA markers. Potravinarstvo, 2018, 12, .	0.5	4
23	Characterization, enzymatic and biochemical properties of endophytic bacterial strains of the medicinal plant Ajuga turkestanica (Rgl.) Brig (Lamiaceae). Journal of King Saud University - Science, 2022, 34, 102183.	1.6	4
24	Characteristics of the molecular forms of lipases synthesizd by the fungusRhizopus microsporus. Chemistry of Natural Compounds, 1993, 29, 788-790.	0.2	3
25	Plant growth-promoting endophytic bacteria associated with Halocnemum strobilaceum (Pall.) M.Bieb and their plant beneficial traits. Plant Science Today, 2021, 8, 44-50.	0.4	3
26	Properties of two lipases from the fungusMucor miehei. Chemistry of Natural Compounds, 1996, 31, 372-375.	0.2	2
27	Current state of the study of microbial lipases. Chemistry of Natural Compounds, 1997, 33, 113-126.	0.2	2
28	Enzymatic utilization of cotton oil soap stock. Applied Biochemistry and Microbiology, 2000, 36, 19-22.	0.3	2
29	State of fungal lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in border layers water—solid phase and factors affecting catalytic properties of Enzymes. Applied Biochemistry and Microbiology, 2015, 51, 600-607.	0.3	2
30	Influence of some organic acids on the activity of the malate dehydrogenase of cotton seeds. Chemistry of Natural Compounds, 1972, 8, 229-230.	0.2	1
31	Isolation of an intracellular lipase from the heat-tolerant fungus Rhizopus microsporus UzLT-1 and its properties. Chemistry of Natural Compounds, 1977, 13, 471-473.	0.2	1
32	Immobilization of Oospora lactis lipase. Chemistry of Natural Compounds, 1988, 24, 621-624.	0.2	1
33	Isolation, purification, and some physicochemical properties of glucose isomerase from Streptomyces atratus. Chemistry of Natural Compounds, 1991, 26, 444-447.	0.2	1
34	The effect of acid proteinases on the activity and stability of glucoamylase preparations. Applied Biochemistry and Microbiology, 2006, 42, 181-185.	0.3	1
35	Metabolites of Bacillus subtilis SKB 256, growth inhibitors of phytopathogenic fungi. Chemistry of Natural Compounds, 2010, 46, 160-162.	0.2	1
36	Soil Salinity and Microbes: Diversity, Ecology, and Biotechnological Potential. Microorganisms for Sustainability, 2018, , 317-332.	0.4	1

#	Article	IF	CITATIONS
37	The Conception of Microbial Preparations Development for a Crop Production. MikrobiolohichnyÄ- Zhurnal, 2021, 83, 87-100.	0.2	1
38	Oospora lactic lipase: Isolation and properties. Collection of Czechoslovak Chemical Communications, 1990, 55, 2110-2117.	1.0	1
39	Epiphytic Bacteria Bacillus subtilis UzNU-18 from Jerusalem Artichoke (Helianthus tuberosus L.) – the Active Biocontrol Agent of Phytopathogenic Microorganisms. MikrobiolohichnyÄ-Zhurnal, 2019, 81, 27-39.	0.2	1
40	Malate dehydrogenase from cotton seed. Chemistry of Natural Compounds, 1969, 5, 285-286.	0.2	0
41	lsoenzyme composition of soluble malate dehydrogenase from cotton seeds. Chemistry of Natural Compounds, 1970, 6, 670-671.	0.2	Ο
42	Separation of the malate dehydrogenase isoenzymes of cotton seeds. Chemistry of Natural Compounds, 1971, 7, 777-780.	0.2	0
43	Electrophoretic investigations of isoenzymes of some cotton seed dehydrogenases. Chemistry of Natural Compounds, 1971, 7, 212-213.	0.2	Ο
44	Determination of the N-terminal amino acid of cottonseed malate dehydrogenase. Chemistry of Natural Compounds, 1972, 8, 635-635.	0.2	0
45	Determination of the C-terminal amino acid of cottonseed malate dehydrogenase. Chemistry of Natural Compounds, 1972, 8, 637-637.	0.2	Ο
46	Some properties of the malate dehydrogenase of cotton seeds. Chemistry of Natural Compounds, 1972, 8, 364-368.	0.2	0
47	A lipase from the fungus Rhizopus microsporus strain UzLT-1. Chemistry of Natural Compounds, 1975, 11, 302-303.	0.2	Ο
48	The lipase of the fungus Rhizopus microsporus, UZLT-1. Chemistry of Natural Compounds, 1976, 12, 568-570.	0.2	0
49	A lipase of the fungus Rhizopus microsporus, UzLT-1 ? A glycoprotein. Chemistry of Natural Compounds, 1977, 13, 226-227.	0.2	0
50	Preparation of adsorbed lipase and its properties. Chemistry of Natural Compounds, 1977, 13, 228-231.	0.2	0
51	Isolation and purification of a lipase from the fungusOospora lactis. Chemistry of Natural Compounds, 1978, 14, 473-474.	0.2	0
52	The phospholipase activity of the fungusRhizopus microsporus UzLT-1. Chemistry of Natural Compounds, 1978, 14, 568-568.	0.2	0
53	Purification of the intracellular triacylglycerol lipase ofOospora lactis. Chemistry of Natural Compounds, 1981, 17, 365-368.	0.2	0
54	Lipoprotein lipase activity of the fungusRhizopus microsporus. Chemistry of Natural Compounds, 1981, 17, 294-296.	0.2	0

4

Kakhramon Davranov

#	Article	IF	CITATIONS
55	The subunit structure of a lipase inhibitor. Chemistry of Natural Compounds, 1983, 19, 634-635.	0.2	0
56	Isolation of a lipase inhibitor from the fungus Rhizopus microsporus. Chemistry of Natural Compounds, 1983, 19, 352-354.	0.2	0
57	Isolation, purification, and characterization of two forms of lipase from the fungusMucor miehei. Chemistry of Natural Compounds, 1994, 30, 622-624.	0.2	0
58	Carbohydrate compositions of preparations of fungal origin. Chemistry of Natural Compounds, 1997, 33, 268-272.	0.2	0
59	Preparation and Application of Immobilized Cells from the Fungus Mucor miehei. Chemistry of Natural Compounds, 2000, 36, 402-403.	0.2	0
60	Change of Lipid Composition of Mucor miehei as a Function of Cultivation Temperature. Chemistry of Natural Compounds, 2000, 36, 349-351.	0.2	0
61	Phospholipids of the thermophilic fungusMucor miehei. Chemistry of Natural Compounds, 2000, 36, 276-278.	0.2	0
62	Title is missing!. Applied Biochemistry and Microbiology, 2001, 37, 192-194.	0.3	0
63	Structure, Antigenic Activity, and Biological Properties of Water-Soluble Cotton Marker Proteins. Chemistry of Natural Compounds, 2003, 39, 316-317.	0.2	0
64	Free-Radical Gossypol Derivatives for Cotton Verticillium Wilt. Chemistry of Natural Compounds, 2004, 40, 75-78.	0.2	0
65	Purification of extracellular α-amylase and proteinase from Bacillus subtilis SKB 256. Chemistry of Natural Compounds, 2010, 46, 436-439.	0.2	0
66	Characteristics of intracellular proteinases from Bacillus subtilis SKB 256. Chemistry of Natural Compounds, 2010, 46, 831-832.	0.2	0
67	Purification of extracellular proteinases from B. subtilis SKB 256 by biospecific chromatography. Applied Biochemistry and Microbiology, 2011, 47, 245-249.	0.3	0
68	Extremophiles in Saline Environment: Potential for Sustainable Agriculture. Microorganisms for Sustainability, 2021, , 1-16.	0.4	0
69	The diversity of bacterial endophytes from Iris pseudacorus L. and their plant beneficial traits. Current Research in Microbial Sciences, 2022, 3, 100133.	1.4	0