
Supriya Pillai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4437937/publications.pdf Version: 2024-02-01

Shiddiva Dillai

#	Article	IF	CITATIONS
1	Plasmonics for Photovoltaics. , 2021, , 627-627.		Ο
2	Evidence of Low-Temperature Joints in Silver Nanowire Based Transparent Conducting Layers for Solar Cells. ACS Applied Nano Materials, 2020, 3, 3205-3213.	2.4	7
3	Large-Area Nanosphere Gratings for Light Trapping and Reduced Surface Losses in Thin Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1012-1019.	1.5	8
4	Light Harvesting in Organic Solar cells. , 2018, , 292-308.		0
5	Plasmonics in Organic and Perovskite Solar Cells: Optical and Electrical Effects. Advanced Optical Materials, 2017, 5, 1600698.	3.6	76
6	Dark carrier dynamics and electrical characteristics of organic solar cells integrated with Ag-SiO2 core-shell nanoparticles. Synthetic Metals, 2017, 223, 34-42.	2.1	4
7	The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors. Scientific Reports, 2017, 7, 12826.	1.6	30
8	Interfacial engineering of hole transport layers with metal and dielectric nanoparticles for efficient perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 25016-25024.	1.3	15
9	Low-Temperature Solution Processed Random Silver Nanowire as a Promising Replacement for Indium Tin Oxide. ACS Applied Materials & Interfaces, 2017, 9, 34093-34100.	4.0	23
10	Low temperature solution process for random high aspect ratio silver nanowire as promising transparent conductive layer. , 2017, , .		0
11	Realistic Silver Optical Constants for Plasmonics. Scientific Reports, 2016, 6, 30605.	1.6	83
12	Promising hybrid graphene-silver nanowire transparent conductive electrode. , 2016, , .		1
13	Grain boundary effects on the optical constants and Drude relaxation times of silver films. Journal of Applied Physics, 2016, 120, .	1.1	10
14	Enhanced Broadband Light Trapping in c-Si Solar Cells Using Nanosphere-Embedded Metallic Grating Structure. IEEE Journal of Photovoltaics, 2016, 6, 61-67.	1.5	15
15	The effect of ageing on the scattering properties of silver nanoparticles for a plasmonic solar cell. Journal of Applied Physics, 2015, 118, 153102.	1.1	8
16	Nanosphere lithography for improved absorption in thin crystalline silicon solar cells. , 2015, , .		0
17	Nanostructured metallic rear reflectors for thin solar cells: balancing parasitic absorption in metal and large-angle scattering. , 2015, , .		Ο
18	Self-Assembled Nanostructured Rear Reflector Designs for Thin-Film Solar Cells. ACS Photonics, 2015, 2, 1108-1116.	3.2	15

SUPRIYA PILLAI

#	Article	IF	CITATIONS
19	Re-evaluation of literature values of silver optical constants. Optics Express, 2015, 23, 2133.	1.7	39
20	Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?. Scientific Reports, 2015, 5, 11852.	1.6	23
21	Porous Silicon Omnidirectional Bragg Reflector for Si Solar Cells. , 2014, , .		2
22	Re-interpretation of Silver Optical Constants for Plasmonic Applications. , 2014, , .		0
23	Plasmonic rear reflectors for thin-film solar cells: design principles from electromagnetic modelling. , 2014, , .		0
24	Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell. Solar Energy Materials and Solar Cells, 2014, 122, 208-216.	3.0	21
25	Design of Anodic Aluminum Oxide Rear Surface Plasmonic Heterostructures for Light Trapping in Thin Silicon Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1212-1219.	1.5	10
26	A novel silver nanoparticle assisted texture as broadband antireflection coating for solar cell applications. Solar Energy Materials and Solar Cells, 2013, 109, 233-239.	3.0	37
27	Angular reflection study to reduce plasmonic losses in the dielectrically displaced back reflectors of silicon solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 343-349.	3.0	4
28	Characterization of 2-D reflection pattern from textured front surfaces of silicon solar cells. Solar Energy Materials and Solar Cells, 2013, 115, 42-51.	3.0	20
29	Ageing effects on plasmonic properties for solar cell applications. , 2013, , .		Ο
30	Effect of Surface Plasmon Resonance on the Photoluminescence from Si Quantum Dot Structures for Third Generation Solar Cell Applications. Materials Research Society Symposia Proceedings, 2012, 1391, 18.	0.1	0
31	The effect of rear surface passivation layer thickness on high efficiency solar cells with planar and scattering metal reflectors. , 2012, , .		Ο
32	Plasmonics for Photovoltaics. , 2012, , 641-656.		0
33	Harnessing plasmonics for solar cells. Nature Photonics, 2012, 6, 130-132.	15.6	435
34	Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Solar Energy Materials and Solar Cells, 2012, 101, 217-226.	3.0	64
35	The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. Journal of Applied Physics, 2011, 109, .	1.1	125
36	Nanoparticleâ€enhanced light trapping in thinâ€film silicon solar cells. Progress in Photovoltaics: Research and Applications, 2011, 19, 917-926.	4.4	80

SUPRIYA PILLAI

#	Article	IF	CITATIONS
37	Surface plasmons for improving the performance of quantum dot structures for third generation solar cell applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 181-184.	0.8	9
38	Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells, 2010, 94, 1481-1486.	3.0	426
39	Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons. Applied Physics Letters, 2010, 96, .	1.5	128
40	Photovoltaic Plasmonics. , 2008, , .		0
41	Surface plasmon enhanced silicon solar cells. Journal of Applied Physics, 2007, 101, 093105.	1.1	1,624
42	Absorption enhancement due to scattering by dipoles into silicon waveguides. Journal of Applied Physics, 2006, 100, 044504.	1.1	87
43	Enhanced emission from Si-based light-emitting diodes using surface plasmons. Applied Physics Letters, 2006, 88, 161102.	1.5	242
44	Surface plasmons for enhanced silicon light-emitting diodes and solar cells. Journal of Luminescence, 2006, 121, 315-318.	1.5	71
45	Enhancement of scattering and light-extraction by metal particles on silicon waveguides. , 2005, 6037, 57.		1
46	Effects of dielectric overcoating on the absorption enhancement of SOI LEDs with metal island films. , 2005, , .		0

4