Hiroyuki Yano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4437912/publications.pdf

Version: 2024-02-01

46984 51562 11,243 86 47 86 citations h-index g-index papers 87 87 87 8160 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pre-fibrillation of pulps to manufacture cellulose nanofiber-reinforced high-density polyethylene using the dry pulp direct kneading method. Cellulose, 2022, 29, 2985-2998.	2.4	1
2	Hindrance to nanofibrillation of undried pulp produced by the kraft cooking process. Carbohydrate Polymers, 2022, 291, 119481.	5.1	4
3	Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 2021, 33, e2002264.	11.1	239
4	Toughened Hydrogels through UV Grafting of Cellulose Nanofibers. ACS Sustainable Chemistry and Engineering, 2021, 9, 1507-1511.	3.2	8
5	Strain-stiffening composite hydrogels through UV grafting of cellulose nanofibers. Cellulose, 2021, 28, 1489-1497.	2.4	5
6	Influences of dispersion media for chemically modified cellulose nanofibers on rheological and mechanical properties of cellulose nanofiber reinforced high-density polyethylene. Cellulose, 2021, 28, 4719-4728.	2.4	4
7	Polyamide 6 composites reinforced with nanofibrillated cellulose formed during compounding: Effect of acetyl group degree of substitution. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106385.	3.8	15
8	Life Cycle Greenhouse Gas Emissions of Acetylated Cellulose Nanofiber-Reinforced Polylactic Acid Based on Scale-Up from Lab-Scale Experiments. ACS Sustainable Chemistry and Engineering, 2021, 9, 10444-10452.	3.2	14
9	Fabrication of ultrastiff and strong hydrogels by in situ polymerization in layered cellulose nanofibers. Cellulose, 2020, 27, 693-702.	2.4	8
10	Optically transparent tough nanocomposites with a hierarchical structure of cellulose nanofiber networks prepared by the Pickering emulsion method. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105811.	3.8	37
11	UV grafting: surface modification of cellulose nanofibers without the use of organic solvents. Green Chemistry, 2019, 21, 4619-4624.	4.6	28
12	Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 18884-18893.	3.2	82
13	Thermally Superstable Cellulosic-Nanorod-Reinforced Transparent Substrates Featuring Microscale Surface Patterns. ACS Nano, 2019, 13, 2015-2023.	7.3	13
14	Multi-functional effect of alkenyl-succinic-anhydride-modified microfibrillated celluloses as reinforcement and a dispersant of CaCO3 in high-density polyethylene. Cellulose, 2019, 26, 6641-6651.	2.4	7
15	Highly Thermalâ€Resilient AgNW Transparent Electrode and Optical Device on Thermomechanically Superstable Cellulose Nanorodâ€Reinforced Nanocomposites. Advanced Optical Materials, 2019, 7, 1900532.	3.6	14
16	Stiffened Nanocomposite Hydrogels by Using Modified Cellulose Nanofibers via Plug Flow Reactor Method. ACS Sustainable Chemistry and Engineering, 2019, 7, 9092-9096.	3.2	6
17	Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding. Polymers, 2019, 11, 249.	2.0	47
18	Improving the thermal stability of wood-based cellulose by esterification. Carbohydrate Polymers, 2018, 192, 28-36.	5.1	35

#	Article	IF	CITATIONS
19	Evolution of cellular morphologies and crystalline structures in high-expansion isotactic polypropylene/cellulose nanofiber nanocomposite foams. RSC Advances, 2018, 8, 15405-15416.	1.7	25
20	Fabrication of optically transparent cotton fiber composite. Journal of Materials Science, 2018, 53, 10872-10878.	1.7	9
21	Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites. Composites Science and Technology, 2018, 168, 412-419.	3.8	61
22	Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly(vinyl) Tj ETQq0 (0 0 rgBT /0\	verlock 10 Tf ! 25
23	Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose, 2018, 25, 5089-5097.	2.4	27
24	Designing cellulose nanofiber surface for high density polyethylene reinforcement. Cellulose, 2018, 25, 3351-3362.	2.4	65
25	Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites. Chemical Engineering Journal, 2018, 354, 563-568.	6.6	48
26	Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization. Carbohydrate Polymers, 2017, 164, 1-7.	5.1	13
27	Unprecedented Development of Ultrahigh Expansion Injection-Molded Polypropylene Foams by Introducing Hydrophobic-Modified Cellulose Nanofibers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9250-9254.	4.0	72
28	Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Composites Part A: Applied Science and Manufacturing, 2017, 98, 166-173.	3.8	87
29	Acetylation of Ground Pulp: Monitoring Acetylation via HSQC-NMR Spectroscopy. ACS Sustainable Chemistry and Engineering, 2017, 5, 1755-1762.	3.2	16
30	Effect of preparation process of microfibrillated cellulose-reinforced polypropylene upon dispersion and mechanical properties. Cellulose, 2017, 24, 3789-3801.	2.4	18
31	Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse―Nacre-like Architecture. ACS Applied Materials & Interfaces, 2017, 9, 30177-30184.	4.0	35
32	Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44079-44087.	4.0	53
33	Biocomposites Composed of Polyamide 11 and Cellulose Nanofibers Pretreated with a Cationic Reagents. Nihon Reoroji Gakkaishi, 2016, 45, 39-47.	0.2	15
34	Investigation of the mechanism and effectiveness of cationic polymer as a compatibilizer in microfibrillated cellulose-reinforced polyolefins. Cellulose, 2016, 23, 623-635.	2.4	24
35	Surface Engineering of Cellulose Nanofiber by Adsorption of Diblock Copolymer Dispersant for Green Nanocomposite Materials. ACS Applied Materials & Interfaces, 2016, 8, 24893-24900.	4.0	65
36	Products of low-temperature pyrolysis of nanocellulose esters and implications for the mechanism of thermal stabilization. Cellulose, 2016, 23, 2887-2903.	2.4	14

#	Article	IF	Citations
37	Preparation by combined enzymatic and mechanical treatment and characterization of nanofibrillated cotton fibers. Cellulose, 2016, 23, 3639-3651.	2.4	18
38	The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose, 2016, 23, 451-464.	2.4	52
39	Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Composites Part A: Applied Science and Manufacturing, 2016, 83, 72-79.	3.8	100
40	Doubly curved nanofiber-reinforced optically transparent composites. Scientific Reports, 2015, 5, 16421.	1.6	19
41	Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose, 2015, 22, 2543-2550.	2.4	47
42	Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose, 2015, 22, 421-433.	2.4	131
43	Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. International Journal of Biological Macromolecules, 2015, 74, 428-432.	3.6	60
44	Crosslinking via sulfur vulcanization of natural rubber and cellulose nanofibers incorporating unsaturated fatty acids. RSC Advances, 2015, 5, 29814-29819.	1.7	65
45	Cellulose nanofibre–poly(lactic acid) microcellular foams exhibiting high tensile toughness. Reactive and Functional Polymers, 2014, 85, 201-207.	2.0	29
46	Wood Pulpâ€Based Optically Transparent Film: A Paradigm from Nanofibers to Nanostructured Fibers. Advanced Optical Materials, 2014, 2, 231-234.	3.6	40
47	Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose, 2014, 21, 1505-1515.	2.4	75
48	Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose, 2014, 21, 1517-1528.	2.4	75
49	Influence of drying method and precipitated salts on pyrolysis for nanocelluloses. Cellulose, 2014, 21, 1631-1639.	2.4	8
50	Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose, 2014, 21, 507-518.	2.4	66
51	Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose, 2014, 21, 3339-3346.	2.4	27
52	Simplified Fabrication of Optically Transparent Composites Reinforced with Nanostructured Chitin. Journal of Polymers and the Environment, 2013, 21, 937-943.	2.4	14
53	Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose, 2013, 20, 201-210.	2.4	80
54	Self-organizing capacity of nanocelluloses via droplet evaporation. Soft Matter, 2013, 9, 3396.	1.2	33

#	Article	IF	Citations
55	Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose, 2012, 19, 1907-1912.	2.4	108
56	Semiquantitative Structural Analysis of Highly Anisotropic Cellulose Nanocolloids. ACS Macro Letters, 2012, 1, 651-655.	2.3	19
57	The transparent crab: preparation and nanostructural implications for bioinspired optically transparent nanocomposites. Soft Matter, 2012, 8, 1369-1373.	1.2	43
58	Zeta Potential Time Dependence Reveals the Swelling Dynamics of Wood Cellulose Nanofibrils. Langmuir, 2012, 28, 818-827.	1.6	45
59	Effective Young's Modulus of Bacterial and Microfibrillated Cellulose Fibrils in Fibrous Networks. Biomacromolecules, 2012, 13, 1340-1349.	2.6	189
60	The role of cellulose nanofibres in supercritical foaming of polylactic acid and their effect on the foam morphology. Soft Matter, 2012, 8, 8704.	1.2	58
61	Nanofibrillation of Wood Pulp Using a High-Speed Blender. Biomacromolecules, 2011, 12, 348-353.	2.6	213
62	The synergetic effect of phenylphosphonic acid zinc and microfibrillated cellulose on the injection molding cycle time of PLA composites. Cellulose, 2011, 18, 689-698.	2.4	50
63	Fabrication of optically transparent chitin nanocomposites. Applied Physics A: Materials Science and Processing, 2011, 102, 325-331.	1.1	80
64	Formation of hydrogels from cellulose nanofibers. Carbohydrate Polymers, 2011, 85, 733-737.	5.1	117
65	Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose, 2010, 17, 271-277.	2.4	166
66	Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose, 2010, 17, 771-778.	2.4	109
67	Optically transparent nanofiber sheets by deposition of transparent materials: A concept for a roll-to-roll processing. Applied Physics Letters, 2009, 94, 233117.	1.5	78
68	Optically Transparent Nanofiber Paper. Advanced Materials, 2009, 21, 1595-1598.	11.1	941
69	Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology, 2009, 69, 1958-1961.	3.8	311
70	Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose, 2009, 16, 1017-1023.	2.4	326
71	The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology, 2009, 69, 1187-1192.	3.8	526
72	Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Composites Science and Technology, 2009, 69, 1293-1297.	3.8	262

#	Article	IF	Citations
73	High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Composites Science and Technology, 2009, 69, 2434-2437.	3.8	68
74	Preparation of Chitin Nanofibers with a Uniform Width as \hat{l}_{\pm} -Chitin from Crab Shells. Biomacromolecules, 2009, 10, 1584-1588.	2.6	441
75	Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose, 2008, 15, 323-331.	2.4	109
76	The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose, 2008, 15, 555-559.	2.4	193
77	Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Advanced Materials, 2008, 20, 1849-1852.	11.1	480
78	The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules, 2008, 9, 1022-1026.	2.6	447
79	Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules, 2007, 8, 3276-3278.	2.6	794
80	Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites:Â Dependence on Acetyl-Group DS. Biomacromolecules, 2007, 8, 1973-1978.	2.6	389
81	Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A: Materials Science and Processing, 2007, 89, 461-466.	1.1	554
82	Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Applied Physics Letters, 2006, 88, 133124.	1.5	117
83	Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Advanced Materials, 2005, 17, 153-155.	11.1	908
84	Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A: Materials Science and Processing, 2005, 80, 93-97.	1.1	334
85	Optically transparent composites reinforced with plant fiber-based nanofibers. Applied Physics A: Materials Science and Processing, 2005, 81, 1109-1112.	1.1	408
86	Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Applied Physics Letters, 2005, 87, 243110.	1.5	175