Vijendra Prabhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/443735/publications.pdf

Version: 2024-02-01

28 papers

342 citations

759233 12 h-index 18 g-index

28 all docs 28 docs citations

28 times ranked

433 citing authors

#	Article	IF	CITATIONS
1	Spectroscopic and histological evaluation of wound healing progression following Low Level Laser Therapy (LLLT). Journal of Biophotonics, 2012, 5, 168-184.	2.3	43
2	Photo-biomodulatory response of low-power laser irradiation on burn tissue repair in mice. Lasers in Medical Science, 2016, 31, 1741-1750.	2.1	35
3	Evaluation of Pharmacokinetic, Biodistribution, Pharmacodynamic, and Toxicity Profile of Free Juglone and Its Sterically Stabilized Liposomes. Journal of Pharmaceutical Sciences, 2011, 100, 3517-3528.	3.3	31
4	Influence of Heliumâ€Neon Laser Irradiation on Seed Germination ⟨i⟩In Vitro⟨/i⟩ and Physicoâ€Biochemical Characters in Seedlings of Brinjal (⟨i⟩Solanum melongena⟨/i⟩ L.) var. Mattu Gulla. Photochemistry and Photobiology, 2012, 88, 1227-1235.	2.5	26
5	Objective Assessment of Endogenous Collagen In Vivo during Tissue Repair by Laser Induced Fluorescence. PLoS ONE, 2014, 9, e98609.	2.5	26
6	Pseudomonas aeruginosa virulence proteins pseudolysin and protease IV impede cutaneous wound healing. Laboratory Investigation, 2020, 100, 1532-1550.	3.7	25
7	Development and Evaluation of Fiber Optic Probeâ€based Helium–Neon Lowâ€level Laser Therapy System for Tissue Regeneration—An <i>In Vivo</i> Experimental Study. Photochemistry and Photobiology, 2010, 86, 1364-1372.	2.5	24
8	Effect of Laser Dose and Treatment Schedule on Excision Wound Healing in Diabetic Mice. Photochemistry and Photobiology, 2011, 87, 1433-1441.	2.5	24
9	Thread integrated smart-phone imaging facilitates early turning point colorimetric assay for microbes. RSC Advances, 2020, 10, 26853-26861.	3.6	24
10	Evaluation of high-performance liquid chromatography laser-induced fluorescence for serum protein profiling for early diagnosis of oral cancer. Journal of Biomedical Optics, 2010, 15, 067007.	2.6	18
11	Photobiomodulation invigorating collagen deposition, proliferating cell nuclear antigen and Ki67 expression during dermal wound repair in mice. Lasers in Medical Science, 2022, 37, 171-180.	2.1	13
12	In vitro culture responses, callus growth and organogenetic potential of brinjal (Solanum) Tj ETQq0 0 0 rgBT /Ov 174, 333-341.	verlock 10 3.8	Tf 50 307 Td 12
13	Laser-induced autofluorescence-based objective evaluation of burn tissue repair in mice. Lasers in Medical Science, 2018, 33, 699-707.	2.1	12
14	Highly Sensitive High Performance Liquid Chromatography-Laser Induced Fluorescence for Proteomics Applications. ISRN Spectroscopy, 2012, 2012, 1-9.	0.9	11
15	Probing endogenous collagen by laserâ€induced autofluorescence in burn wound biopsies: A pilot study. Journal of Biophotonics, 2018, 11, e201700394.	2.3	4
16	Survivin Inhibition by Piperine Sensitizes Glioblastoma Cancer Stem Cells and Leads to Better Drug Response. International Journal of Molecular Sciences, 2022, 23, 7604.	4.1	4
17	Classification of Laser Induced Fluorescence spectra from normal and malignant tissues using Learning Vector Quantization neural network in bladder cancer diagnosis. , 2008, , .		3
18	Development and evaluation of an optical fibre-based helium-neon laser irradiation system for tissue regeneration: A pilot study. Pramana - Journal of Physics, 2010, 75, 1287-1293.	1.8	2

#	Article	IF	CITATIONS
19	Photobiomodulatory effects of He-Ne laser on excision wounds. , 2011, , .		1
20	Autofluorescence of Osteoporotic Mouse Femur Bones: A Pilot Study. Photomedicine and Laser Surgery, 2011, 29, 227-232.	2.0	1
21	Non-invasive,in vivofluorescence technique as an objective tool for monitoring wound healing following low level laser therapy. , 2013, , .		1
22	Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study. , 2014, , .		1
23	Low power laser irradiation stimulates cell proliferation via proliferating cell nuclear antigen and Ki-67 expression during tissue repair. , 2015, , .		1
24	Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure. , $2014, , .$		0
25	Prognostic prospective of laser induced fluorescence as an objective tool to evaluate collagen deposition in thermal wounds: anex vivostudy. , 2014, , .		O
26	Efficacy of multiple exposure with low level He-Ne laser dose on acute wound healing: a pre-clinical study. Proceedings of SPIE, 2014, , .	0.8	0
27	Regulation of cellular marker modulated upon irradiation of low power laser light in burn injured mice. , 2016, , .		0
28	Action of He-Ne laser on wounded human skin fibroblast cells. , 2019, , .		0