
John F Mcdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4437286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of Genetic Ancestry and Molecular Signatures with Cancer Survival Disparities: A Pan-Cancer Analysis. Cancer Research, 2022, 82, 1222-1233.	0.4	11
2	Epigenetics and cancer disparities: when nature might be nurture. Oncoscience, 2022, 9, 23-24.	0.9	1
3	A computational approach to generate highlyÂconserved gene co-expression networksÂwithÂRNA-seq data. STAR Protocols, 2022, 3, 101432.	0.5	1
4	Label-free microfluidic enrichment of cancer cells from non-cancer cells in ascites. Scientific Reports, 2021, 11, 18032.	1.6	7
5	Changes in gene-gene interactions associated with cancer onset and progression are largely independent of changes in gene expression. IScience, 2021, 24, 103522.	1.9	9
6	Cancer Exacerbates Chemotherapy-Induced Sensory Neuropathy. Cancer Research, 2020, 80, 2940-2955.	0.4	21
7	The ability of miRNAs to induce mesenchymal-to-epithelial transition (MET) in cancer cells is highly dependent upon genetic background. Cancer Letters, 2020, 480, 15-23.	3.2	2
8	Sequence diverse miRNAs converge to induce mesenchymal-to-epithelial transition in ovarian cancer cells through direct and indirect regulatory controls. Cancer Letters, 2019, 459, 168-175.	3.2	10
9	Analyzing Mechanisms of Metastatic Cancer Cell Adhesive Phenotype Leveraging Preparative Adhesion Chromatography Microfluidic. Advanced Biology, 2019, 3, e1800328.	3.0	9
10	Essential role of JunD in cell proliferation is mediated via MYC signaling in prostate cancer cells. Cancer Letters, 2019, 448, 155-167.	3.2	42
11	Bioinformatics analysis of circulating miRNAs related to cancer following spinal cord injury. Bioscience Reports, 2019, 39, .	1.1	3
12	Back to the future - The integration of big data with machine learning is re-establishing the importance of predictive correlations in ovarian cancer diagnostics and therapeutics. Gynecologic Oncology, 2018, 149, 230-231.	0.6	10
13	Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy. Scientific Reports, 2018, 8, 16444.	1.6	96
14	Time-course analysis of microRNA-induced mesenchymal-to-epithelial transition underscores the complexity of the underlying molecular processes. Cancer Letters, 2018, 428, 184-191.	3.2	7
15	Evidence for the importance of post-transcriptional regulatory changes in ovarian cancer progression and the contribution of miRNAs. Scientific Reports, 2017, 7, 8171.	1.6	14
16	Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PLoS ONE, 2017, 12, e0186906.	1.1	85
17	De novo assembly and characterization of breast cancer transcriptomes identifies large numbers of novel fusion-gene transcripts of potential functional significance. BMC Medical Genomics, 2017, 10, 53.	0.7	10
18	Targeted in vivo delivery of EGFR siRNA inhibits ovarian cancer growth and enhances drug sensitivity. Scientific Reports, 2016, 6, 36518.	1.6	24

John F Mcdonald

#	Article	IF	CITATIONS
19	Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity. BMC Cancer, 2016, 16, 236.	1.1	38
20	Highly-accurate metabolomic detection of early-stage ovarian cancer. Scientific Reports, 2015, 5, 16351.	1.6	65
21	Evidence and potential clinical significance of changes in gene network interactions in ovarian cancer. Journal of Biomedical Engineering and Informatics, 2015, 2, 1.	0.2	2
22	OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles. PLoS ONE, 2015, 10, e0118262.	1.1	29
23	Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles. Nanomedicine, 2015, 10, 1775-1784.	1.7	21
24	Design and structure activity relationship of tumor-homing histone deacetylase inhibitors conjugated to folic and pteroic acids. European Journal of Medicinal Chemistry, 2015, 96, 340-359.	2.6	28
25	Integrated sequence and expression analysis of ovarian cancer structural variants underscores the importance of gene fusion regulation. BMC Medical Genomics, 2015, 8, 40.	0.7	5
26	p66Shc longevity protein regulates the proliferation of human ovarian cancer cells. Molecular Carcinogenesis, 2015, 54, 618-631.	1.3	12
27	SNAILâ€induced epithelialâ€ŧoâ€mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression. FASEB Journal, 2015, 29, 1280-1289.	0.2	53
28	Functional and Evolutionary Significance of Human MicroRNA Seed Region Mutations. PLoS ONE, 2014, 9, e115241.	1.1	40
29	Distinct metabolic responses of an ovarian cancer stem cell line. BMC Systems Biology, 2014, 8, 134.	3.0	23
30	Ectopic over-expression of miR-429 induces mesenchymal-to-epithelial transition (MET) and increased drug sensitivity in metastasizing ovarian cancer cells. Gynecologic Oncology, 2014, 134, 96-103.	0.6	32
31	Sequence variation among members of the miR-200 microRNA family is correlated with variation in the ability to induce hallmarks of mesenchymal-epithelial transition in ovarian cancer cells. Journal of Ovarian Research, 2014, 7, 12.	1.3	20
32	Histone H1.3 Suppresses <i>H19</i> Noncoding RNA Expression and Cell Growth of Ovarian Cancer Cells. Cancer Research, 2014, 74, 6463-6473.	0.4	68
33	Transcriptional override: a regulatory network model of indirect responses to modulations in microRNA expression. BMC Systems Biology, 2014, 8, 36.	3.0	19
34	Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. Journal of Biomechanics, 2014, 47, 2197-2204.	0.9	61
35	Molecular profiling supports the role of epithelial-to-mesenchymal transition (EMT) in ovarian cancer metastasis. Journal of Ovarian Research, 2013, 6, 49.	1.3	53
36	Molecular analysis of the inhibitory effect of N-acetyl-L-cysteine on the proliferation and invasiveness of pancreatic cancer cells. Anti-Cancer Drugs, 2013, 24, 504-518.	0.7	10

John F Mcdonald

#	Article	IF	CITATIONS
37	Molecular Profiling Predicts the Existence of Two Functionally Distinct Classes of Ovarian Cancer Stroma. BioMed Research International, 2013, 2013, 1-9.	0.9	49
38	R-SAP: a multi-threading computational pipeline for the characterization of high-throughput RNA-sequencing data. Nucleic Acids Research, 2012, 40, e67-e67.	6.5	6
39	The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated. BMC Medical Genomics, 2012, 5, 33.	0.7	30
40	Identification of inhibitors of ovarian cancer stem-like cells by high-throughput screening. Journal of Ovarian Research, 2012, 5, 30.	1.3	36
41	Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and Cellular Biochemistry, 2012, 363, 257-268.	1.4	78
42	Human Cells Display Reduced Apoptotic Function Relative to Chimpanzee Cells. PLoS ONE, 2012, 7, e46182.	1.1	15
43	Targeted removal of migratory tumor cells by functionalized magnetic nanoparticles impedes metastasis and tumor progression. Nanomedicine, 2011, 6, 69-78.	1.7	24
44	Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells. Gynecologic Oncology, 2011, 121, 200-205.	0.6	122
45	Camalexin induces apoptosis in T-leukemia Jurkat cells by increased concentration of reactive oxygen species and activation of caspase-8 and caspase-9. Journal of Natural Medicines, 2011, 65, 488-499.	1.1	31
46	Evidence for the Complexity of MicroRNA-Mediated Regulation in Ovarian Cancer: A Systems Approach. PLoS ONE, 2011, 6, e22508.	1.1	43
47	Subcutenous xenografts of human T-lineage acute lymphoblastic leukemia Jurkat cells in nude mice. In Vivo, 2011, 25, 603-7.	0.6	2
48	Selective removal of ovarian cancer cells from human ascites fluid using magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 399-408.	1.7	54
49	Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Medical Genomics, 2009, 2, 71.	0.7	187
50	Magnetic Nanoparticleâ^'Peptide Conjugates for in Vitro and in Vivo Targeting and Extraction of Cancer Cells. Journal of the American Chemical Society, 2008, 130, 10258-10262.	6.6	189
51	Evidence that p53-Mediated Cell-Cycle-Arrest Inhibits Chemotherapeutic Treatment of Ovarian Carcinomas. PLoS ONE, 2007, 2, e441.	1.1	51
52	Ancient retroviral insertions among human populations. Journal of Human Genetics, 2006, 51, 353-362.	1.1	11