Gary P Brennan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4436446/publications.pdf

Version: 2024-02-01

30	1,230	19	30
papers	citations	h-index	g-index
30	30	30	1607 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis. PLoS ONE, 2012, 7, e35921.	2.5	121
2	The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. ELife, 2014, 3, e01267.	6.0	115
3	MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nature Reviews Neurology, 2020, 16, 506-519.	10.1	92
4	Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks. Cell Reports, 2016, 14, 2402-2412.	6.4	88
5	Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine, 2018, 38, 127-141.	6.1	88
6	A microRNAâ€129â€5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO Journal, 2017, 36, 1770-1787.	7.8	85
7	Rapid, Coordinate Inflammatory Responses after Experimental Febrile Status Epilepticus: Implications for Epileptogenesis. ENeuro, 2015, 2, ENEURO.0034-15.2015.	1.9	60
8	Enduring Memory Impairments Provoked by Developmental Febrile Seizures Are Mediated by Functional and Structural Effects of Neuronal Restrictive Silencing Factor. Journal of Neuroscience, 2017, 37, 3799-3812.	3 . 6	55
9	Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022384.	6.2	52
10	microRNAs in the pathophysiology of epilepsy. Neuroscience Letters, 2018, 667, 47-52.	2.1	46
11	Transgenic Overexpression of 14-3-3 Zeta Protects Hippocampus against Endoplasmic Reticulum Stress and Status Epilepticus In Vivo. PLoS ONE, 2013, 8, e54491.	2.5	44
12	A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15977-15988.	7.1	41
13	Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiology of Disease, 2020, 144, 105048.	4.4	35
14	A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 255-266.	4.1	31
15	Regulatory Mechanisms of the RNA Modification m6A and Significance in Brain Function in Health and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 671932.	3.7	29
16	Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures. Journal of Neuroscience, 2019, 39, 5064-5079.	3.6	28
17	Altered Biogenesis and MicroRNA Content of Hippocampal Exosomes Following Experimental Status Epilepticus. Frontiers in Neuroscience, 2019, 13, 1404.	2.8	27
18	The Role of Sirt1 in Epileptogenesis. ENeuro, 2017, 4, ENEURO.0301-16.2017.	1.9	26

#	Article	IF	CITATIONS
19	Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Molecular Neurodegeneration, 2017, 12, 21.	10.8	23
20	Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiology of Disease, 2021, 148, 105179.	4.4	20
21	Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Molecular Therapy, 2021, 29, 2041-2052.	8.2	20
22	CHD2-Related CNS Pathologies. International Journal of Molecular Sciences, 2021, 22, 588.	4.1	20
23	Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Molecular Brain, 2020, 13, 114.	2.6	18
24	Spared <scp>CA</scp> 1 pyramidal neuron function and hippocampal performance following antisense knockdown of micro <scp>RNA</scp> â€134. Epilepsia, 2018, 59, 1518-1526.	5.1	17
25	Temporally Altered miRNA Expression in a Piglet Model of Hypoxic Ischemic Brain Injury. Molecular Neurobiology, 2020, 57, 4322-4344.	4.0	12
26	Multiple Disruptions of Glial-Neuronal Networks in Epileptogenesis That Follows Prolonged Febrile Seizures. Frontiers in Neurology, 2021, 12, 615802.	2.4	12
27	Proteomic analysis of 14-3-3 zeta binding proteins in the mouse hippocampus. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 74-83.	0.8	11
28	RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS ONE, 2018, 13, e0207952.	2.5	8
29	Overexpression of 14-3-3î¶ Increases Brain Levels of C/EBP Homologous Protein CHOP. Journal of Molecular Neuroscience, 2015, 56, 255-262.	2.3	4
30	Detection of MicroRNAs in Brain Slices Using In Situ Hybridization. Methods in Molecular Biology, 2017, 1509, 85-91.	0.9	2