
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4436313/publications.pdf Version: 2024-02-01

HONGLIANG

#	Article	IF	CITATIONS
1	Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 2015, 115, 12251-12285.	47.7	1,149
2	Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 2012, 121, 235-240.	9.6	520
3	Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 2014, 48, 396-405.	11.3	509
4	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	30.8	481
5	Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chemistry, 2015, 17, 4888-4907.	9.0	437
6	Fates of Chemical Elements in Biomass during Its Pyrolysis. Chemical Reviews, 2017, 117, 6367-6398.	47.7	399
7	Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 2014, 169, 403-408.	9.6	344
8	Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 2014, 248, 168-174.	12.7	331
9	Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution. Environmental Science & Technology, 2017, 51, 10081-10089.	10.0	306
10	Preparation of high adsorption capacity bio-chars from waste biomass. Bioresource Technology, 2011, 102, 8247-8252.	9.6	239
11	Ultrathin Cobalt Oxide Layers as Electrocatalysts for Highâ€Performance Flexible Zn–Air Batteries. Advanced Materials, 2019, 31, e1807468.	21.0	227
12	High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors. Chemical Engineering Journal, 2019, 359, 572-583.	12.7	226
13	Investigation on the Evolution of N-Containing Organic Compounds during Pyrolysis of Sewage Sludge. Environmental Science & Technology, 2014, 48, 10888-10896.	10.0	223
14	Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 2014, 236, 448-463.	12.7	215
15	Mesoporous Carbon Stabilized MgO Nanoparticles Synthesized by Pyrolysis of MgCl ₂ Preloaded Waste Biomass for Highly Efficient CO ₂ Capture. Environmental Science & Technology, 2013, 47, 9397-9403.	10.0	204
16	A Fenton-like process for the enhanced activated sludge dewatering. Chemical Engineering Journal, 2015, 272, 128-134.	12.7	186
17	Migration of Phosphorus in Sewage Sludge during Different Thermal Treatment Processes. ACS Sustainable Chemistry and Engineering, 2014, 2, 1411-1419.	6.7	178
18	High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage. Environmental Science & Technology, 2014, 48, 13951-13959.	10.0	173

#	Article	IF	CITATIONS
19	Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource Technology, 2017, 246, 224-233.	9.6	160
20	Studies on the extraction of phenol in wastewater. Journal of Hazardous Materials, 2003, 101, 179-190.	12.4	141
21	Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Scientific Reports, 2013, 3, 2419.	3.3	140
22	Selectively Improving the Bio-Oil Quality by Catalytic Fast Pyrolysis of Heavy-Metal-Polluted Biomass: Take Copper (Cu) as an Example. Environmental Science & Technology, 2012, 46, 7849-7856.	10.0	138
23	Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green Chemistry, 2014, 16, 4198.	9.0	135
24	Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nature Sustainability, 2020, 3, 753-760.	23.7	124
25	Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 2013, 93, 2069-2075.	8.2	115
26	The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation. Bioresource Technology, 2017, 246, 57-68.	9.6	106
27	Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes. ACS Sustainable Chemistry and Engineering, 2017, 5, 6682-6691.	6.7	105
28	One-pot synthesis of Ni–NiFe ₂ O ₄ /carbon nanofiber composites from biomass for selective hydrogenation of aromatic nitro compounds. Green Chemistry, 2015, 17, 821-826.	9.0	100
29	Self-heating co-pyrolysis of excessive activated sludge with waste biomass: Energy balance and sludge reduction. Bioresource Technology, 2013, 133, 16-22.	9.6	95
30	Selective hydrogenation of lignin to produce chemical commodities by using a biochar supported Ni–Mo ₂ C catalyst obtained from biomass. Green Chemistry, 2016, 18, 4032-4041.	9.0	94
31	Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char with Ultra-High Adsorption to 1-Naphthol. Environmental Science & Technology, 2016, 50, 2602-2609.	10.0	93
32	Facile modification of a graphitic carbon nitride catalyst to improve its photoreactivity under visible light irradiation. Chemical Engineering Journal, 2014, 256, 230-237.	12.7	92
33	Copper release from copper nanoparticles in the presence of natural organic matter. Water Research, 2015, 68, 12-23.	11.3	92
34	A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. Journal of Bioresources and Bioproducts, 2020, 5, 238-247.	20.5	88
35	Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis. Scientific Reports, 2013, 3, 1120.	3.3	87
36	Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis. Environmental Science & Technology, 2018, 52, 5330-5338.	10.0	87

#	Article	IF	CITATIONS
37	High-efficiency removal of Cr(VI) by modified biochar derived from glue residue. Journal of Cleaner Production, 2020, 254, 119935.	9.3	85
38	Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresource Technology, 2011, 102, 3471-3479.	9.6	83
39	Composite Fe2O3 and ZrO2/Al2O3 photocatalyst: Preparation, characterization, and studies on the photocatalytic activity and chemical stability. Chemical Engineering Journal, 2012, 180, 9-18.	12.7	82
40	The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column. Environmental Research, 2018, 166, 377-383.	7.5	82
41	Bio-coal: A renewable and massively producible fuel from lignocellulosic biomass. Science Advances, 2020, 6, eaay0748.	10.3	81
42	Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl2 activated EDTA. Chemical Engineering Journal, 2011, 170, 21-28.	12.7	78
43	Comparative Investigation on Photoreactivity and Mechanism of Biogenic and Chemosythetic Ag/C ₃ N ₄ Composites under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2015, 3, 269-276.	6.7	76
44	Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system. Chemosphere, 2016, 148, 34-40.	8.2	74
45	The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 2013, 229, 412-419.	12.7	69
46	Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins. Bioresource Technology, 2013, 128, 1-7.	9.6	67
47	Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst. Green Chemistry, 2020, 22, 5730-5741.	9.0	66
48	Layered oxides supported Co-Fe bimetal catalyst for carbamazepine degradation via the catalytic activation of peroxymonosulfate. Chemical Engineering Journal, 2020, 400, 125899.	12.7	64
49	Achieving high-efficiency and ultrafast removal of Pb(<scp>ii</scp>) by one-pot incorporation of a N-doped carbon hydrogel into FeMg layered double hydroxides. Journal of Materials Chemistry A, 2016, 4, 10336-10344.	10.3	63
50	One-pot high yield synthesis of Ag nanoparticle-embedded biochar hybrid materials from waste biomass for catalytic Cr(<scp>vi</scp>) reduction. Environmental Science: Nano, 2016, 3, 745-753.	4.3	58
51	Facile synthesis of Ag/Ag 3 PO 4 /AMB composite with improved photocatalytic performance. Chemical Engineering Journal, 2017, 308, 889-896.	12.7	58
52	Biotoxicity Evaluations of Three Typical Biochars Using a Simulated System of Fast Pyrolytic Biochar Extracts on Organisms of Three Kingdoms. ACS Sustainable Chemistry and Engineering, 2017, 5, 481-488.	6.7	55
53	Surfactant-mediated settleability and dewaterability of activated sludge. Chemical Engineering Science, 2014, 116, 228-234.	3.8	54
54	MOF Templated Nitrogen Doped Carbon Stabilized Pt–Co Bimetallic Nanoparticles: Low Pt Content and Robust Activity toward Electrocatalytic Oxygen Reduction Reaction. ACS Applied Nano Materials, 2018, 1, 3331-3338.	5.0	53

#	Article	IF	CITATIONS
55	Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance. Environmental Science & Technology, 2016, 50, 12421-12428.	10.0	52
56	Kinetics and Mechanisms of Radiolytic Degradation of Nitrobenzene in Aqueous Solutions. Environmental Science & Technology, 2007, 41, 1977-1982.	10.0	51
57	One-pot synthesis of a carbon supported bimetallic Cu–Ag NPs catalyst for robust catalytic hydroxylation of benzene to phenol by fast pyrolysis of biomass waste. Green Chemistry, 2016, 18, 5643-5650.	9.0	51
58	Advances in the Characterization Methods of Biomass Pyrolysis Products. ACS Sustainable Chemistry and Engineering, 2019, 7, 12639-12655.	6.7	51
59	Separation of phthalate esters from bio-oil derived from rice husk by a basification–acidification process and column chromatography. Bioresource Technology, 2011, 102, 1982-1987.	9.6	50
60	Fractional characterization of a bio-oil derived from rice husk. Biomass and Bioenergy, 2011, 35, 671-678.	5.7	49
61	Enhancing the Catalytic Activity and Stability of Noble Metal Nanoparticles by the Strong Interaction of Magnetic Biochar Support. Industrial & Engineering Chemistry Research, 2018, 57, 13055-13064.	3.7	49
62	Biosorption of Cr (VI) by Typha angustifolia: Mechanism and responses to heavy metal stress. Bioresource Technology, 2014, 160, 89-92.	9.6	46
63	Fluorescence Approach for the Determination of Fluorescent Dissolved Organic Matter. Analytical Chemistry, 2017, 89, 4264-4271.	6.5	45
64	Study on the application of integrated eco-engineering in purifying eutrophic river waters. Ecological Engineering, 2016, 94, 320-328.	3.6	44
65	High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds. Chemical Engineering Journal, 2015, 259, 161-169.	12.7	42
66	Lab-scale thermal analysis of electronic waste plastics. Journal of Hazardous Materials, 2016, 310, 217-225.	12.4	42
67	Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution. Chemosphere, 2014, 113, 175-181.	8.2	41
68	Slow Pyrolysis Magnetization of Hydrochar for Effective and Highly Stable Removal of Tetracycline from Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 3059-3066.	3.7	41
69	Separation and Recycle of Phenol from Wastewater by Liquid–Liquid Extraction. Separation Science and Technology, 2003, 38, 2579-2596.	2.5	38
70	Electrochemically Catalytic Degradation of Phenol with Hydrogen Peroxide in Situ Generated and Activated by a Municipal Sludge-Derived Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 5540-5546.	6.7	38
71	Bio-oil upgrading at ambient pressure and temperature using zero valent metals. Green Chemistry, 2012, 14, 2226.	9.0	36
72	Thermochemical Behavior of Tris(2-Butoxyethyl) Phosphate (TBEP) during Co-pyrolysis with Biomass. Environmental Science & Technology, 2014, 48, 10734-10742.	10.0	35

#	Article	IF	CITATIONS
73	Techno-economic evaluation of the integrated biosorption–pyrolysis technology for lead (Pb) recovery from aqueous solution. Bioresource Technology, 2011, 102, 6260-6265.	9.6	32
74	Hydrogenation of Furfural to Cyclopentanone under Mild Conditions by a Structureâ€Optimized Niâ^'NiO/TiO ₂ Heterojunction Catalyst. ChemSusChem, 2020, 13, 5507-5515.	6.8	31
75	Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Chemosphere, 2021, 284, 131348.	8.2	31
76	Rapamycin targets STAT3 and impacts c-Myc to suppress tumor growth. Cell Chemical Biology, 2022, 29, 373-385.e6.	5.2	31
77	Ultra-high capacity and selective immobilization of Pb through crystal growth of hydroxypyromorphite on amino-functionalized hydrochar. Journal of Materials Chemistry A, 2015, 3, 9843-9850.	10.3	30
78	Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustainable Energy and Fuels, 2017, 1, 891-898.	4.9	28
79	Well-Defined MOF-Derived Hierarchically Porous N-Doped Carbon Materials for the Selective Hydrogenation of Phenol to Cyclohexanone. Industrial & Engineering Chemistry Research, 2021, 60, 5806-5815.	3.7	28
80	Continuous and complete conversion of high concentration <i>p</i> â€nitrophenol in a flowâ€ŧhrough membrane reactor. AICHE Journal, 2019, 65, e16692.	3.6	27
81	Catalytic cycloaddition of CO2 to epoxides by the synergistic effect of acidity and alkalinity in a functionalized biochar. Chemical Engineering Journal, 2022, 442, 136265.	12.7	27
82	Large scale preparation of microbubbles by multiâ€channel ceramic membranes: Hydrodynamics and mass transfer characteristics. Canadian Journal of Chemical Engineering, 2017, 95, 2176-2185.	1.7	26
83	Biochar-supported magnetic noble metallic nanoparticles for the fast recovery of excessive reductant during pollutant reduction. Chemosphere, 2019, 227, 63-71.	8.2	26
84	Pd Nanoparticles Loaded on Two-Dimensional Covalent Organic Frameworks with Enhanced Catalytic Performance for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 18489-18499.	3.7	26
85	Robust biochar-assisted alleviation of membrane fouling in MBRs by indirect mechanism. Separation and Purification Technology, 2017, 184, 195-204.	7.9	25
86	Significant enhancement of photoreactivity of graphitic carbon nitride catalysts under acidic conditions and the underlying H+-mediated mechanism. Chemosphere, 2015, 141, 127-133.	8.2	22
87	Controllable Structure and Basic Sites of Pd@N-Doped Carbon Derived from Co/Zn-ZIFs: Role of Co. Industrial & Engineering Chemistry Research, 2019, 58, 14678-14687.	3.7	22
88	Highly Dispersed Manganese Based Mn/N–C/Al ₂ O ₃ Catalyst for Selective Oxidation of the C–H Bond of Ethylbenzene. Industrial & Engineering Chemistry Research, 2019, 58, 3969-3977.	3.7	22
89	Synthesis of p-aminophenol from p-nitrophenol reduction over Pd@ZIF-8. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 307-317.	1.7	21
90	Preparation of MOF Confined Ag Nanoparticles for the Highly Active, Size Selective Hydrogenation of Olefins. ChemCatChem, 2018, 10, 3659-3665.	3.7	21

#	Article	IF	CITATIONS
91	Preparation of Flower-like CuFe ₂ O ₄ by a Self-Templating Method for High-Efficient Activation of Peroxymonosulfate To Degrade Carbamazepine. Industrial & Engineering Chemistry Research, 2021, 60, 11045-11055.	3.7	21
92	Highly Efficient Phenol Hydrogenation to Cyclohexanone over Pd@CN-rGO in Aqueous Phase. Industrial & Engineering Chemistry Research, 2020, 59, 10768-10777.	3.7	20
93	Boosting the activity and environmental stability of nanoscale zero-valent iron by montmorillonite supporting and sulfidation treatment. Chemical Engineering Journal, 2020, 387, 124063.	12.7	20
94	Co-Loaded N-Doped Biochar as a High-Performance Oxygen Reduction Reaction Electrocatalyst by Combined Pyrolysis of Biomass. Industrial & Engineering Chemistry Research, 2020, 59, 15614-15623.	3.7	19
95	Enhanced catalytic properties of Pd nanoparticles by their deposition on ZnO-coated ceramic membranes. RSC Advances, 2016, 6, 2087-2095.	3.6	17
96	Preventing the Release of Cu ²⁺ and 4-CP from Contaminated Sediments by Employing a Biochar Capping Treatment. Industrial & Engineering Chemistry Research, 2017, 56, 7730-7738.	3.7	17
97	Harvesting Biomass-Based Ni–N Doped Carbonaceous Materials with High Capacitance by Fast Pyrolysis of Ni Enriched Spent Wetland Biomass. Industrial & Engineering Chemistry Research, 2019, 58, 13868-13878.	3.7	17
98	Liquid phase hydroxylation of benzene to phenol over vanadyl acetylacetonate supported on amine functionalized SBA-15. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 535-547.	1.7	16
99	Preparation of high adsorption performance and stable biochar granules by FeCl ₃ -catalyzed fast pyrolysis. RSC Advances, 2016, 6, 12226-12234.	3.6	16
100	Solar Thermal Electrochemical Process (STEP) action to biomass: Solar thermo-coupled electrochemical synergy for efficient breaking of biomass to biofuels and hydrogen. Energy Conversion and Management, 2019, 180, 1247-1259.	9.2	16
101	Gasification of Rice Husk in a Fluidized-Bed Gasifier without Inert Additives. Industrial & Engineering Chemistry Research, 2003, 42, 5745-5750.	3.7	15
102	Efficient Control of Microbubble Properties by Alcohol Shear Flows in Ceramic Membrane Channels. Chemical Engineering and Technology, 2018, 41, 168-174.	1.5	15
103	Efficiently reducing the plant growth inhibition of CuO NPs using rice husk-derived biochar: experimental demonstration and mechanism investigation. Environmental Science: Nano, 2017, 4, 1722-1732.	4.3	14
104	Precise and Economical Dredging Model of Sediments and Its Field Application: Case Study of a River Heavily Polluted by Organic Matter, Nitrogen, and Phosphorus. Environmental Management, 2014, 53, 1119-1131.	2.7	13
105	Controllable Synthesis of Pd-ZIF-L-GO: The Role of Drying Temperature. Industrial & Engineering Chemistry Research, 2021, 60, 4847-4859.	3.7	13
106	Porous Membrane Reactors for Liquid-Phase Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2021, 60, 8969-8990.	3.7	13
107	A simple and versatile synthesis strategy of hollow MOFs for CO ₂ separation and catalysis. Chemical Communications, 2022, 58, 7944-7947.	4.1	13
108	Improving Capacitance by Introducing Nitrogen Species and Defects into Graphene. ChemElectroChem, 2015, 2, 859-866.	3.4	12

#	Article	IF	CITATIONS
109	Role of initial water content in glycerol hydrogenolysis to 1,2-propanediol over Cu–ZnO catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 1129-1143.	1.7	12
110	Highly stable and selective measurement of Fe3+ ions under environmentally relevant conditions via an excitation-based multiwavelength method using N, S-doped carbon dots. Environmental Research, 2019, 170, 443-451.	7.5	12
111	Matching Relationship Between Carbon Material and Pd Precursor. Catalysis Letters, 2019, 149, 813-822.	2.6	12
112	Flexible hierarchical Pd/SiO ₂ -TiO ₂ nanofibrous catalytic membrane for complete and continuous reduction of <i>p</i> -nitrophenol. Journal of Experimental Nanoscience, 2021, 16, 62-80.	2.4	12
113	Hierarchical Pd@ZIFs as Efficient Catalysts for <i>p</i> -Nitrophenol Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 15045-15055.	3.7	12
114	An investigation on reuse of Cr-contaminated sediment: Cr removal and interaction between Cr and organic matter. Chemical Engineering Journal, 2012, 189-190, 222-228.	12.7	11
115	Controllable synthesis of Pd@ZIF-L catalysts by an assembly method. RSC Advances, 2016, 6, 21337-21344.	3.6	11
116	Pd Nanoparticles Loaded on Ceramic Membranes by Atomic Layer Deposition with Enhanced Catalytic Properties. Industrial & Engineering Chemistry Research, 2020, 59, 19564-19573.	3.7	11
117	Investigations on the dissolved organic matter leached from oil-contaminated soils by using pyrolysis remediation method. Science of the Total Environment, 2021, 776, 145921.	8.0	11
118	Palladium Nanoparticles Anchored on COFs Prepared by Simple Calcination for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2021, 60, 13523-13533.	3.7	11
119	A study on the reactions of NADH models with electron-deficient alkenes. A probe for the extreme of concerted electron-hydrogen atom transfer mechanism. Tetrahedron Letters, 2009, 50, 312-315.	1.4	10
120	Design, Preparation, and Characterization of a Novel Hyper-Cross-Linked Polyphosphamide Polymer and Its Adsorption for Phenol. Industrial & Engineering Chemistry Research, 2011, 50, 11614-11619.	3.7	10
121	Determination of Total Nitrogen in Solid Samples by Two-Step Digestion–Ultraviolet Spectrophotometry Method. Communications in Soil Science and Plant Analysis, 2013, 44, 1080-1091.	1.4	10
122	Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process. Chinese Journal of Chemical Physics, 2017, 30, 357-364.	1.3	10
123	Pd Nanoparticles Immobilized in Layered ZIFs as Efficient Catalysts for Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2019, 58, 20553-20561.	3.7	10
124	Selective catalytic hydrogenation of phenol to cyclohexanone over Pd@CN: Role of CN precursor separation mode. Canadian Journal of Chemical Engineering, 2019, 97, 1506-1514.	1.7	10
125	Pd nanoparticles immobilized on TiO2 nanotubes-functionalized ceramic membranes for flow-through catalysis. Korean Journal of Chemical Engineering, 2019, 36, 385-392.	2.7	10
126	Fabrication of Pd@N-doped porous carbon-TiO2 as a highly efficient catalyst for the selective hydrogenation of phenol to cyclohexanone in water. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 463-476.	1.7	10

#	Article	IF	CITATIONS
127	One‧tep Thermochemical Conversion of Biomass Waste into Superhydrophobic Carbon Material by Catalytic Pyrolysis. Global Challenges, 2020, 4, 1900085.	3.6	10
128	Novel photo-induced coupling reaction of 9-fluorenylidenemalononitrile with 10-methyl-9,10-dihydroacridine. Chemical Communications, 2002, , 882-883.	4.1	9
129	High catalytic efficiency of <scp>Pd</scp> nanoparticles immobilized on <scp>TiO</scp> ₂ nanorodsâ€coated ceramic membranes. Canadian Journal of Chemical Engineering, 2017, 95, 2374-2382.	1.7	9
130	Sustainable In Situ Carbothermal Reduction Route to Biochar Stabilized Ru–Cu Nanoalloys from Lignocellulosic Biomass as a Highly Efficient and Durable Catalyst. Advanced Sustainable Systems, 2017, 1, 1700102.	5.3	9
131	Controlling microbubbles in alcohol solutions by using a multiâ€channel ceramic membrane distributor. Journal of Chemical Technology and Biotechnology, 2018, 93, 2456-2463.	3.2	9
132	Nontemplating Porous Carbon Material from Polyphosphamide Resin for Supercapacitors. IScience, 2019, 12, 204-215.	4.1	9
133	Preparation of highly stable and easily regenerated sulfuretted nZVI via one-pot fast pyrolysis method for the removal of diclofenac. Journal of Environmental Chemical Engineering, 2021, 9, 105425.	6.7	9
134	Hierarchical Pd@PC-COFs as Efficient Catalysts for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2022, 61, 4534-4545.	3.7	9
135	pH-Dependent Interactions Between Lead and <i>Typha angustifolia</i> Biomass in the Biosorption Process. Industrial & Engineering Chemistry Research, 2011, 50, 5920-5926.	3.7	8
136	Computational Fluid Dynamics Simulation of a Novel Membrane Distributor of Bubble Columns for Generating Microbubbles. Industrial & Engineering Chemistry Research, 2019, 58, 1087-1094.	3.7	8
137	Correlating the chemical properties and bioavailability of dissolved organic matter released from hydrochar of walnut shells. Chemosphere, 2021, 275, 130003.	8.2	8
138	ZIF-Derived Co/Zn Bimetallic Catalytic Membrane with Abundant CNTs for Highly Efficient Reduction of <i>p</i> -Nitrophenol. Industrial & Engineering Chemistry Research, 2022, 61, 7862-7873.	3.7	8
139	Continuous phenol hydroxylation over ultrafine TS-1 in a side-stream ceramic membrane reactor. Korean Journal of Chemical Engineering, 2013, 30, 852-859.	2.7	7
140	Preparation of Gap-Controlled Monodispersed Ag Nanoparticles by Amino Groups Grafted on Silica Microspheres as a SERS Substrate for the Detection of Low Concentrations of Organic Compounds. Industrial & Engineering Chemistry Research, 2018, 57, 7855-7865.	3.7	7
141	High-Efficiency and Ground-State Atomic Oxygen-Dominant Photodegradation of Carbamazepine by Coupling Chlorine and g-C ₃ N ₄ . Industrial & Engineering Chemistry Research, 2021, 60, 2112-2122.	3.7	7
142	Pd Nanoparticles Supported on Hierarchically Porous Carbon Nanofibers as Efficient Catalysts for Phenol Hydrogenation. Catalysis Letters, 2022, 152, 340-352.	2.6	7
143	Two-dimensional N-doped Pd/carbon for highly efficient heterogeneous catalysis. Chemical Communications, 2022, 58, 1422-1425.	4.1	7
144	Simultaneous recovery of nutrients and improving the biodegradability of waste algae hydrothermal liquid. Environmental Pollution, 2022, 307, 119556.	7.5	7

#	Article	IF	CITATIONS
145	Controllable Synthesis of 1D Pd@N-CNFs with High Catalytic Performance for Phenol Hydrogenation. Catalysis Letters, 2021, 151, 1013-1024.	2.6	6
146	Fluorine and phosphorus co-doped TiO2(001) nanosheets as a high-stability visible light-driven photocatalyst. Journal of Environmental Chemical Engineering, 2021, 9, 106719.	6.7	6
147	Comparison of Liquid-Liquid Extraction System and Extraction-Evaporation System for High Concentrations of Phenolic Wastewater. Journal of Environmental Engineering, ASCE, 2007, 133, 198-202.	1.4	5
148	Selective phenol hydrogenation to cyclohexanone over Pd@N-doped porous carbon: role of storage under air of recovered catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 605-617.	1.7	5
149	Spectroscopic investigation reveals the interference mechanism of surfactants on the removal of 1-naphthol by activated biochar. Journal of Environmental Chemical Engineering, 2018, 6, 4196-4205.	6.7	5
150	Extractionâ^'Oxidationâ^'Adsorption Process for Treatment of Effluents from Resin Industries. Industrial & Engineering Chemistry Research, 2007, 46, 1667-1671.	3.7	4
151	Insights into the Stability of Pd/CN Catalyst in Liquid Phase Hydrogenation of Phenol to Cyclohexanone: Role of Solvent. Catalysis Letters, 2019, 149, 3087-3096.	2.6	4
152	Bubble dynamics and mass transfer characteristics from an immersed orifice plate. Journal of Chemical Technology and Biotechnology, 2020, 95, 1729-1738.	3.2	4
153	Integrating modeling and experimental method for narrowing the optimum phase composition in P25 photocatalyst for typical aromatic pollutants degradation. Chemical Engineering Journal, 2021, 417, 128061.	12.7	4
154	A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2′3′-cGAMP. Cell Chemical Biology, 2022, 29, 133-144.e20.	5.2	4
155	Modeling and Simulation of Hydrodynamics and Filtration in a Membraneâ€Assisted Stirred Slurry Reactor. Chemical Engineering and Technology, 2021, 44, 1548-1557.	1.5	2
156	Insights into Microstructure and Surface Properties of Pd/C for Liquid Phase Phenol Hydrogenation to Cyclohexanone. Catalysis Letters, 2023, 153, 208-218.	2.6	2
157	Novel photoâ€induced coupling reactions of 9â€fluorenylideneâ€malononitrile or 1,1â€diphenylâ€2,2â€dicyanoethylene with 10â€methylâ€9,10â€dihydroacridine. A study on the photophysics of reaction. Chinese Journal of Chemistry, 2003, 21, 1400-1402.	tho	1
158	Rebound behaviors of hydrophilic particle on gas bubble: effect of particle size and liquid properties. Journal of Chemical Technology and Biotechnology, 2021, 96, 2400.	3.2	1
159	Protocol for identification and validation of 2′3′-cGAMP-binding proteins by photoaffinity probes. STAR Protocols, 2022, 3, 101076.	1.2	1
160	Controllable synthesis of Pd-zeolitic imidazolate framework-porous graphene oxide (Pd-ZIF-pGO) with enhanced catalytic properties for the reduction of nitroarenes. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 867-879.	1.7	1
161	Treatment of Landfill Leachate by SCWO Process. , 2008, , .		0

162 Experimental Investigation on Converting of Agricultural Waste to Bio-Gas. , 2008, , .