Federico Canzian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4436151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	13.7	1,099
2	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	2.6	1,098
3	Incidence of Hereditary Nonpolyposis Colorectal Cancer and the Feasibility of Molecular Screening for the Disease. New England Journal of Medicine, 1998, 338, 1481-1487.	13.9	1,048
4	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
5	Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics, 2009, 41, 986-990.	9.4	597
6	Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nature Genetics, 2008, 40, 631-637.	9.4	542
7	A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.	9.4	539
8	Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics, 2012, 44, 651-658.	9.4	519
9	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	9.4	513
10	A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nature Genetics, 2010, 42, 978-984.	9.4	493
11	Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	9.4	492
12	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408
13	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	3.4	376
14	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	9.4	374
15	Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis, 2006, 27, 560-567.	1.3	365
16	Cigarette Smoking and Pancreatic Cancer: A Pooled Analysis From the Pancreatic Cancer Cohort Consortium. American Journal of Epidemiology, 2009, 170, 403-413.	1.6	298
17	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	9.4	294
18	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289

#	Article	IF	CITATIONS
19	Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States. JAMA Oncology, 2016, 2, 1295.	3.4	285
20	A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nature Genetics, 2011, 43, 1210-1214.	9.4	279
21	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	9.4	265
22	Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis, 2007, 29, 579-584.	1.3	257
23	Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Research, 2003, 63, 3560-6.	0.4	244
24	Polymorphisms in Genes of Nucleotide and Base Excision Repair: Risk and Prognosis of Colorectal Cancer. Clinical Cancer Research, 2006, 12, 2101-2108.	3.2	227
25	Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nature Genetics, 2015, 47, 911-916.	9.4	224
26	A Gene Predisposing to Familial Thyroid Tumors with Cell Oxyphilia Maps to Chromosome 19p13.2. American Journal of Human Genetics, 1998, 63, 1743-1748.	2.6	221
27	Familial Nontoxic Multinodular Thyroid Goiter Locus Maps to Chromosome 14q but Does Not Account for Familial Nonmedullary Thyroid Cancer. American Journal of Human Genetics, 1997, 61, 1123-1130.	2.6	203
28	Pancreatic Cancer Risk and ABO Blood Group Alleles: Results from the Pancreatic Cancer Cohort Consortium. Cancer Research, 2010, 70, 1015-1023.	0.4	203
29	A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene, 2004, 23, 1954-1956.	2.6	188
30	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	5.8	188
31	Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis, 2003, 25, 229-235.	1.3	184
32	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	9.4	184
33	Localization of a Susceptibility Gene for Familial Nonmedullary Thyroid Carcinoma to Chromosome 2q21. American Journal of Human Genetics, 2001, 69, 440-446.	2.6	175
34	Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nature Communications, 2019, 10, 2154.	5.8	172
35	Large-Scale Investigation of Base Excision Repair Genetic Polymorphisms and Lung Cancer Risk in a Multicenter Study. Journal of the National Cancer Institute, 2005, 97, 567-576.	3.0	166
36	Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Research, 1996, 56, 3331-7.	0.4	160

#	Article	IF	CITATIONS
37	A candidate gene approach to searching for low-penetrance breast and prostate cancer genes. Nature Reviews Cancer, 2005, 5, 977-985.	12.8	152
38	Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.	3.0	152
39	Evidence for an Important Role of Alcohol- and Aldehyde-Metabolizing Genes in Cancers of the Upper Aerodigestive Tract. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 696-703.	1.1	148
40	Interactions Between Genetic Variants and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium. Journal of the National Cancer Institute, 2011, 103, 1252-1263.	3.0	147
41	Genome-Wide Association Study of Classical Hodgkin Lymphoma and Epstein–Barr Virus Status–Defined Subgroups. Journal of the National Cancer Institute, 2012, 104, 240-253.	3.0	141
42	Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a mendelian randomisation approach. Lancet, The, 2005, 366, 1558-1560.	6.3	136
43	A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenetics and Genomics, 2005, 15, 535-546.	0.7	135
44	Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. British Journal of Cancer, 2004, 91, 339-343.	2.9	132
45	Polymorphisms of the interleukin-1 ? gene are associated with increased risk of non-small cell lung cancer. International Journal of Cancer, 2004, 109, 353-356.	2.3	130
46	Inflammation-Related Gene Polymorphisms and Colorectal Adenoma. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1126-1131.	1.1	130
47	Family history of cancer and risk of pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). International Journal of Cancer, 2010, 127, 1421-1428.	2.3	128
48	A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nature Genetics, 1993, 3, 132-136.	9.4	127
49	A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis, 2008, 29, 1164-1169.	1.3	123
50	An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General Population. PLoS ONE, 2013, 8, e72311.	1.1	120
51	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
52	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	1.4	118
53	Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. American Journal of Human Genetics, 2020, 106, 389-404.	2.6	118
54	Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGF-I and IGFBP-3 and breast cancer risk: results from the EPIC study. British Journal of Cancer, 2006, 94, 299-307.	2.9	115

#	Article	IF	CITATIONS
55	t(14;18) Translocation: A Predictive Blood Biomarker for Follicular Lymphoma. Journal of Clinical Oncology, 2014, 32, 1347-1355.	0.8	115
56	Development of a Sensitive and Specific Assay Combining Multiplex PCR and DNA Microarray Primer Extension To Detect High-Risk Mucosal Human Papillomavirus Types. Journal of Clinical Microbiology, 2006, 44, 2025-2031.	1.8	112
57	IGF-1, IGFBP-1, and IGFBP-3 Polymorphisms Predict Circulating IGF Levels but Not Breast Cancer Risk: Findings from the Breast and Prostate Cancer Cohort Consortium (BPC3). PLoS ONE, 2008, 3, e2578.	1.1	106
58	Cytokine gene polymorphisms and the risk of adenocarcinoma of the stomach in the European prospective investigation into cancer and nutrition (EPIC-EURGAST). Annals of Oncology, 2008, 19, 1894-1902.	0.6	105
59	Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis, 2012, 33, 1384-1390.	1.3	102
60	Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Human Molecular Genetics, 2013, 22, 2520-2528.	1.4	100
61	Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.	0.4	100
62	Helicobacter pylori Cytotoxin-Associated Genotype and Gastric Precancerous Lesions. Journal of the National Cancer Institute, 2007, 99, 1328-1334.	3.0	98
63	Dietary inflammatory index and inflammatory gene interactions in relation to colorectal cancer risk in the Bellvitge colorectal cancer case–control study. Genes and Nutrition, 2015, 10, 447.	1.2	95
64	Multiple Loci Affect Genetic Predisposition to Hepatocarcinogenesis in Mice. Genomics, 1994, 23, 118-124.	1.3	93
65	Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes and Control, 2010, 21, 1213-1225.	0.8	93
66	A Risk Model for Lung Cancer Incidence. Cancer Prevention Research, 2012, 5, 834-846.	0.7	93
67	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	5.8	93
68	Development of a Sensitive and Specific Multiplex PCR Method Combined with DNA Microarray Primer Extension To Detect Betapapillomavirus Types. Journal of Clinical Microbiology, 2007, 45, 2537-2544.	1.8	92
69	DNA Repair and Cell Cycle Control Genes and the Risk of Young-Onset Lung Cancer. Cancer Research, 2006, 66, 11062-11069.	0.4	91
70	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	1.4	90
71	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90
72	Two susceptibility loci identified for prostate cancer aggressiveness. Nature Communications, 2015, 6, 6889.	5.8	88

#	Article	IF	CITATIONS
73	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	0.8	88
74	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
75	Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis, 2007, 28, 1287-1293.	1.3	87
76	Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 2016, 7, 11843.	5.8	86
77	Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nature Communications, 2018, 9, 3707.	5.8	86
78	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	0.9	81
79	Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia, 2014, 28, 621-628.	3.3	80
80	Variant ABO Blood Group Alleles, Secretor Status, and Risk of Pancreatic Cancer: Results from the Pancreatic Cancer Cohort Consortium. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 3140-3149.	1.1	78
81	Phylogenetics of the laboratory rat Rattus norvegicus Genome Research, 1997, 7, 262-267.	2.4	77
82	Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis, 2010, 31, 466-472.	1.3	77
83	Association Between TAS2R38 Gene Polymorphisms and Colorectal Cancer Risk: A Case-Control Study in Two Independent Populations of Caucasian Origin. PLoS ONE, 2011, 6, e20464.	1.1	77
84	Is there still a need for candidate gene approaches in the era of genome-wide association studies?. Genomics, 2009, 93, 415-419.	1.3	73
85	Mapping of body weight loci on mouse Chromosome X. Mammalian Genome, 1995, 6, 778-781.	1.0	70
86	Association of <i>CRP</i> genetic variants with blood concentrations of Câ€reactive protein and colorectal cancer risk. International Journal of Cancer, 2015, 136, 1181-1192.	2.3	69
87	PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the Breast and Prostate Cancer Cohort Consortium (BPC3). Carcinogenesis, 2010, 31, 455-461.	1.3	68
88	Genetic Variation in the HSD17B1 Gene and Risk of Prostate Cancer. PLoS Genetics, 2005, 1, e68.	1.5	66
89	Genetic Heterogeneity in Familial Nonmedullary Thyroid Carcinoma: Exclusion of Linkage toRET,MNG1, andTCOin 56 Families1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2157-2162.	1.8	65
90	Chromosome mapping of murine susceptibility loci to liver carcinogenesis. Cancer Research, 1993, 53, 209-11.	0.4	64

#	Article	IF	CITATIONS
91	Interleukin promoter polymorphisms and prognosis in colorectal cancer. Carcinogenesis, 2008, 29, 1202-1206.	1.3	63
92	Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC–EURGAST). Cancer Letters, 2011, 311, 85-95.	3.2	62
93	Prostate stemâ€cell antigen gene is associated with diffuse and intestinal gastric cancer in Caucasians: Results from the EPICâ€EURGAST study. International Journal of Cancer, 2012, 130, 2417-2427.	2.3	60
94	A comprehensive study of polymorphisms in <i>ABCB1, ABCC2</i> and <i>ABCG2</i> and lung cancer chemotherapy response and prognosis. International Journal of Cancer, 2012, 131, 2920-2928.	2.3	60
95	Polymorphisms within inflammatory genes and colorectal cancer. Journal of Negative Results in BioMedicine, 2006, 5, 15.	1.4	59
96	Eighteen Insulin-like Growth Factor Pathway Genes, Circulating Levels of IGF-I and Its Binding Protein, and Risk of Prostate and Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2877-2887.	1.1	59
97	Genome-wide association study of survival in patients with pancreatic adenocarcinoma. Gut, 2014, 63, 152-160.	6.1	59
98	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	3.0	59
99	Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status. Journal of Medical Genetics, 2012, 49, 601-608.	1.5	58
100	Genome-wide association study identifies susceptibility loci for B-cell childhood acute lymphoblastic leukemia. Nature Communications, 2018, 9, 1340.	5.8	58
101	<scp><i>TERT</i></scp> gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.	2.3	57
102	Reliable Detection of Î ² -Thalassemia and G6PD Mutations by a DNA Microarray. Clinical Chemistry, 2002, 48, 2051-2054.	1.5	57
103	Identification of Novel Genetic Markers of Breast Cancer Survival. Journal of the National Cancer Institute, 2015, 107, .	3.0	56
104	Genetic variation in alcohol dehydrogenase (ADH1A, ADH1B, ADH1C, ADH7) and aldehyde dehydrogenase (ALDH2), alcohol consumption and gastric cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Carcinogenesis, 2012, 33, 361-367.	1.3	55
105	ABO blood groups and pancreatic cancer risk and survival: Results from the PANcreatic Disease ReseArch (PANDoRA) consortium. Oncology Reports, 2013, 29, 1637-1644.	1.2	55
106	Genotype transposer: automated genotype manipulation for linkage disequilibrium analysis. Bioinformatics, 2001, 17, 738-739.	1.8	54
107	Polymorphisms of glutathione-S-transferase M1 and manganese superoxide dismutase are associated with the risk of malignant pleural mesothelioma. International Journal of Cancer, 2007, 120, 2739-2743.	2.3	53
108	Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway. Frontiers in Cellular and Infection Microbiology, 2017, 7, 50.	1.8	52

#	Article	IF	CITATIONS
109	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	2.9	52
110	Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Frontiers in Microbiology, 2019, 10, 846.	1.5	51
111	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	1.4	50
112	Folate-related genes and the risk of tobacco-related cancers in Central Europe. Carcinogenesis, 2007, 28, 1334-1340.	1.3	49
113	Pancreatic Cancer Susceptibility Loci and Their Role in Survival. PLoS ONE, 2011, 6, e27921.	1.1	49
114	Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: A review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 717, 109-115.	0.4	48
115	Bitter Taste Receptor Polymorphisms and Human Aging. PLoS ONE, 2012, 7, e45232.	1.1	48
116	The interleukin-8-251*T/*A polymorphism is not associated with risk for gastric carcinoma development in a Portuguese population. European Journal of Cancer Prevention, 2008, 17, 28-32.	0.6	47
117	A comprehensive analysis of common IGF1, IGFBP1 and IGFBP3 genetic variation with prospective IGF-I and IGFBP-3 blood levels and prostate cancer risk among Caucasians â€. Human Molecular Genetics, 2010, 19, 3089-3101.	1.4	47
118	Genetic association of gastric cancer with miRNA clusters including the cancerâ€related genes <i>MIR29, MIR25, MIR93</i> and <i>MIR106</i> : Results from the EPICâ€EURGAST study. International Journal of Cancer, 2014, 135, 2065-2076.	2.3	47
119	Somatic Mutations in Exocrine Pancreatic Tumors: Association with Patient Survival. PLoS ONE, 2013, 8, e60870.	1.1	47
120	Interleukin-4 and interleukin-4 receptor polymorphisms and colorectal cancer risk. European Journal of Cancer, 2007, 43, 762-768.	1.3	46
121	The association of sequence variants in DNA repair and cell cycle genes with cancers of the upper aerodigestive tract. Carcinogenesis, 2006, 28, 665-671.	1.3	45
122	Comprehensive analysis of common genetic variation in 61 genes related to steroid hormone and insulin-like growth factor-I metabolism and breast cancer risk in the NCI breast and prostate cancer cohort consortiumâ€. Human Molecular Genetics, 2010, 19, 3873-3884.	1.4	45
123	Genetic susceptibility to pancreatic cancer and its functional characterisation: The PANcreatic Disease ReseArch (PANDoRA) consortium. Digestive and Liver Disease, 2013, 45, 95-99.	0.4	45
124	Body mass index and breast cancer survival: a Mendelian randomization analysis. International Journal of Epidemiology, 2017, 46, 1814-1822.	0.9	45
125	Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. Journal of the National Cancer Institute, 2021, 113, 329-337.	3.0	45
126	Lack of Association between Polymorphisms in Inflammatory Genes and Lung Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 538-539.	1.1	44

#	Article	IF	CITATIONS
127	Mitochondrial DNA copy number variation, leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Breast Cancer Research, 2018, 20, 29.	2.2	44
128	CA19â€9 and apolipoproteinâ€A2 isoforms as detection markers for pancreatic cancer: a prospective evaluation. International Journal of Cancer, 2019, 144, 1877-1887.	2.3	44
129	Pooled Analysis of Phosphatidylinositol 3-Kinase Pathway Variants and Risk of Prostate Cancer. Cancer Research, 2010, 70, 2389-2396.	0.4	43
130	Instability of microsatellites in rat colon tumors induced by heterocyclic amines. Cancer Research, 1994, 54, 6315-7.	0.4	43
131	Frailty and telomere length: Cross-sectional analysis in 3537 older adults from the ESTHER cohort. Experimental Gerontology, 2014, 58, 250-255.	1.2	42
132	Variations in Helicobacter pylori Cytotoxin-Associated Genes and Their Influence in Progression to Gastric Cancer: Implications for Prevention. PLoS ONE, 2012, 7, e29605.	1.1	42
133	Polymorphisms of the Dopamine Receptor Gene DRD2 and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1633-1638.	1.1	41
134	A gene-wide investigation on polymorphisms in the ABCG2/BRCP transporter and susceptibility to colorectal cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 645, 56-60.	0.4	41
135	Risk factors for cancers of unknown primary site: Results from the prospective EPIC cohort. International Journal of Cancer, 2014, 135, 2475-2481.	2.3	41
136	Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget, 2016, 7, 57011-57020.	0.8	41
137	Vitamin C transporter gene (SLC23A1 and SLC23A2) polymorphisms, plasma vitamin C levels, and gastric cancer risk in the EPIC cohort. Genes and Nutrition, 2013, 8, 549-560.	1.2	40
138	Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nature Communications, 2017, 8, 1892.	5.8	40
139	Mendelian randomisation study of the effects of known and putative risk factors on pancreatic cancer. Journal of Medical Genetics, 2020, 57, 820-828.	1.5	40
140	A rat genetic map constructed by representational difference analysis markers with suitability for large-scale typing Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3914-3919.	3.3	39
141	Inherited Predisposition of Lung Cancer: A Hierarchical Modeling Approach to DNA Repair and Cell Cycle Control Pathways. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2736-2744.	1.1	39
142	Polymorphisms of genes coding for ghrelin and its receptor in relation to anthropometry, circulating levels of IGF-I and IGFBP-3, and breast cancer risk: a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Carcinogenesis, 2008, 29, 1360-1366.	1.3	39
143	The <i>FOXE1</i> locus is a major genetic determinant for familial nonmedullary thyroid carcinoma. International Journal of Cancer, 2014, 134, 2098-2107.	2.3	39
144	Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma. European Urology, 2017, 72, 747-754.	0.9	39

#	Article	IF	CITATIONS
145	Common genetic variation in the IGF-1 gene, serum IGF-I levels and breast density. Breast Cancer Research and Treatment, 2008, 112, 109-122.	1.1	38
146	Haplotypes of the estrogen receptor beta gene and breast cancer risk. International Journal of Cancer, 2008, 122, 387-392.	2.3	38
147	Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nature Communications, 2015, 6, 7539.	5.8	38
148	Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer, 2007, 56, 17-23.	0.9	37
149	Genetic variation in the <i>lactase</i> gene, dairy product intake and risk for prostate cancer in the European prospective investigation into cancer and nutrition. International Journal of Cancer, 2013, 132, 1901-1910.	2.3	37
150	Post-GWAS gene–environment interplay in breast cancer: results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79 000 women. Human Molecular Genetics, 2014, 23, 5260-5270.	1.4	37
151	Additive Interactions Between Susceptibility Single-Nucleotide Polymorphisms Identified in Genome-Wide Association Studies and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium. American Journal of Epidemiology, 2014, 180, 1018-1027.	1.6	36
152	Leukocyte Telomere Length in Relation to Pancreatic Cancer Risk: A Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2447-2454.	1.1	36
153	Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. International Journal of Cancer, 2019, 144, 1275-1283.	2.3	36
154	At least three genes account for familial papillary thyroid carcinoma: TCO and MNG1 excluded as susceptibility loci from a large Tasmanian family. European Journal of Endocrinology, 1999, 141, 122-125.	1.9	35
155	Lack of Association between -251 T>A Polymorphism of IL8 and Lung Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2457-2458.	1.1	35
156	A comprehensive study of polymorphisms in the <i>ABCB1</i> , <i>ABCC2</i> , <i>ABCG2</i> , <i>NR1I2</i> genes and lymphoma risk. International Journal of Cancer, 2012, 131, 803-812.	2.3	35
157	Evaluation of a microarray for genotyping polymorphisms related to xenobiotic metabolism and DNA repair. BioTechniques, 2003, 35, 816-827.	0.8	34
158	Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study. European Journal of Clinical Nutrition, 2012, 66, 1303-1308.	1.3	34
159	Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer. PLoS Genetics, 2014, 10, e1004129.	1.5	34
160	Genetic Variation in the Growth Hormone Synthesis Pathway in Relation to Circulating Insulin-Like Growth Factor-I, Insulin-Like Growth Factor Binding Protein-3, and Breast Cancer Risk: Results from the European Prospective Investigation into Cancer and Nutrition Study. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2316-2325.	1.1	33
161	Sequence Variants of Estrogen Receptor Î ² and Risk of Prostate Cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1973-1981.	1.1	33
162	Polymorphisms in Genes Related to Bacterial Lipopolysaccharide/Peptidoglycan Signaling and Gastric Precancerous Lesions in a Population at High Risk for Gastric Cancer. Digestive Diseases and Sciences, 2007, 52, 254-261.	1.1	33

#	Article	IF	CITATIONS
163	Insulin-like Growth Factor Pathway Genetic Polymorphisms, Circulating IGF1 and IGFBP3, and Prostate Cancer Survival. Journal of the National Cancer Institute, 2014, 106, dju085.	3.0	33
164	Association of breast cancer risk <i>loci</i> with breast cancer survival. International Journal of Cancer, 2015, 137, 2837-2845.	2.3	33
165	Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma. Leukemia, 2019, 33, 2324-2330.	3.3	33
166	A comprehensive analysis of the androgen receptor gene and risk of breast cancer: results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Breast Cancer Research, 2006, 8, R54.	2.2	32
167	Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. Journal of Medical Genetics, 2021, 58, 369-377.	1.5	31
168	Sources of Pre-Analytical Variations in Yield of DNA Extracted from Blood Samples: Analysis of 50,000 DNA Samples in EPIC. PLoS ONE, 2012, 7, e39821.	1.1	31
169	Risk of advanced gastric precancerous lesions in <i>Helicobacter pylori</i> infected subjects is influenced by ABO blood group and <i>cagA</i> status. International Journal of Cancer, 2013, 133, 315-322.	2.3	30
170	Risk of multiple myeloma is associated with polymorphisms within telomerase genes and telomere length. International Journal of Cancer, 2015, 136, E351-8.	2.3	30
171	Germline genetic variability in pancreatic cancer risk and prognosis. Seminars in Cancer Biology, 2022, 79, 105-131.	4.3	30
172	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	5.8	30
173	A Comprehensive Investigation on Common Polymorphisms in the MDR1/ABCB1 Transporter Gene and Susceptibility to Colorectal Cancer. PLoS ONE, 2012, 7, e32784.	1.1	30
174	Histology of familial thyroid tumours linked to a gene mapping to chromosome 19p13.2. , 1999, 189, 387-393.		29
175	Hemochromatosis (HFE) gene mutations and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Carcinogenesis, 2013, 34, 1244-1250.	1.3	29
176	Vitamin D Metabolic Pathway Genes and Pancreatic Cancer Risk. PLoS ONE, 2015, 10, e0117574.	1.1	29
177	Genetic Variation in PSCA and Risk of Gastric Advanced Preneoplastic Lesions and Cancer in Relation to Helicobacter pylori Infection. PLoS ONE, 2013, 8, e73100.	1.1	29
178	Genetic polymorphisms in anti-inflammatory cytokine signaling and the prevalence of gastric precancerous lesions in Venezuela. Cancer Causes and Control, 2006, 17, 1183-1191.	0.8	28
179	Variation at <i>ABO</i> histoâ€blood group and <i>FUT</i> loci and diffuse and intestinal gastric cancer risk in a European population. International Journal of Cancer, 2015, 136, 880-893.	2.3	28
180	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	2.3	28

#	Article	IF	CITATIONS
181	Expectations and challenges stemming from genome-wide association studies. Mutagenesis, 2008, 23, 439-444.	1.0	26
182	Sequence Variants of <i>NAT1</i> and <i>NAT2</i> and Other Xenometabolic Genes and Risk of Lung and Aerodigestive Tract Cancers in Central Europe. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 141-147.	1.1	26
183	Prediagnostic telomere length and risk of B-cell lymphoma-Results from the EPIC cohort study. International Journal of Cancer, 2014, 135, 2910-2917.	2.3	26
184	Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Research, 2015, 17, 58.	2.2	26
185	Data mining: Efficiency of using sequence databases for polymorphism discovery. Human Mutation, 2001, 17, 141-150.	1.1	25
186	Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract. Cancer Causes and Control, 2007, 18, 449-455.	0.8	25
187	Genetic risk variants associated with in situ breast cancer. Breast Cancer Research, 2015, 17, 82.	2.2	25
188	Serum levels of <i>hsaâ€miRâ€16â€5p</i> , <i>hsaâ€miRâ€29aâ€3p</i> , <i>hsaâ€miRâ€150â€5p</i> , <i>hsaâ€miR</i> â€ <i>223â€3p</i> and subsequent risk of chronic lymphocytic leukemia in the EPIC study. International Journal of Cancer, 2020, 147, 1315-1324.	niRâ€155â 2.3	à€5p and 25
189	A catalogue of polymorphisms related to xenobiotic metabolism and cancer susceptibility. Pharmacogenetics and Genomics, 2002, 12, 459-463.	5.7	24
190	Comprehensive evaluation of genetic variation in theIGF1 gene and risk of prostate cancer. International Journal of Cancer, 2007, 120, 539-542.	2.3	24
191	Identification of 29 Rat Genetic Markers by Arbitrarily Primed Polymerase Chain Reaction. Japanese Journal of Cancer Research, 1996, 87, 669-675.	1.7	23
192	Sequence Variants in Cell Cycle Control Pathway, X-ray Exposure, and Lung Cancer Risk: A Multicenter Case-Control Study in Central Europe. Cancer Research, 2006, 66, 8280-8286.	0.4	23
193	Polymorphisms of genes coding for ghrelin and its receptor in relation to colorectal cancer risk: a two-step gene-wide case-control study. BMC Gastroenterology, 2010, 10, 112.	0.8	23
194	A gene-wide investigation on polymorphisms in the taste receptor 2R14 (TAS2R14) and susceptibility to colorectal cancer. BMC Medical Genetics, 2010, 11, 88.	2.1	23
195	Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. Carcinogenesis, 2018, 39, 1056-1067.	1.3	23
196	Genomeâ€wide scan of long noncoding <scp>RNA</scp> single nucleotide polymorphism <scp>s</scp> and pancreatic cancer susceptibility. International Journal of Cancer, 2021, 148, 2779-2788.	2.3	23
197	A haplotype of prostaglandin synthase 2/cyclooxygenase 2 is involved in the susceptibility to inflammatory bowel disease. World Journal of Gastroenterology, 2005, 11, 6003.	1.4	23
198	Host–bacterial interaction in the development of gastric precancerous lesions in a high risk population for gastric cancer in Venezuela. International Journal of Cancer, 2006, 119, 1666-1671.	2.3	22

#	Article	IF	CITATIONS
199	Association between taste receptor (TAS) genes and the perception of wine characteristics. Scientific Reports, 2017, 7, 9239.	1.6	22
200	Comparative Mapping of the Actin-Binding Protein 280 Genes in Human and Mouse. Genomics, 1994, 21, 428-430.	1.3	21
201	Association between polymorphisms of TAS2R16 and susceptibility to colorectal cancer. BMC Gastroenterology, 2017, 17, 104.	0.8	21
202	Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 557-567.	3.0	21
203	Mapping of a gene predisposing to familial thyroid tumors with cell oxyphilia to chromosome 19 and exclusion of JUN B as a candidate gene. Surgery, 1999, 126, 1188-1194.	1.0	20
204	Generation of a DNA microarray for determination of E6 natural variants of human papillomavirus type 16. Journal of Virological Methods, 2004, 119, 95-102.	1.0	20
205	Use of whole genome amplification to rescue DNA from plasma samples. BioTechniques, 2005, 39, 511-515.	0.8	20
206	Genetic variation in genes of the fatty acid synthesis pathway and breast cancer risk. Breast Cancer Research and Treatment, 2009, 118, 565-574.	1.1	20
207	Single-nucleotide polymorphisms (5p15.33, 15q25.1, 6p22.1, 6q27 and 7p15.3) and lung cancer survival in the European Prospective Investigation into Cancer and Nutrition (EPIC). Mutagenesis, 2011, 26, 657-666.	1.0	20
208	Interaction between functional polymorphic variants in cytokine genes, established risk factors and susceptibility to basal cell carcinoma of skin. Carcinogenesis, 2011, 32, 1849-1854.	1.3	20
209	Identification of candidate genes carrying polymorphisms associated with the risk of colorectal cancer by analyzing the colorectal mutome and microRNAome. Cancer, 2012, 118, 4670-4680.	2.0	20
210	Menstrual and reproductive factors in women, genetic variation in <i>CYP17A1</i> , and pancreatic cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. International Journal of Cancer, 2013, 132, 2164-2175.	2.3	20
211	Lack of Replication of Seven Pancreatic Cancer Susceptibility Loci Identified in Two Asian Populations. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 320-323.	1.1	20
212	Germline <i>BRCA2</i> K3326X and <i>CHEK2</i> I157T mutations increase risk for sporadic pancreatic ductal adenocarcinoma. International Journal of Cancer, 2019, 145, 686-693.	2.3	20
213	Genetic polymorphisms associated with telomere length and risk of developing myeloproliferative neoplasms. Blood Cancer Journal, 2020, 10, 89.	2.8	20
214	Genomeâ€wide association study identifies an early onset pancreatic cancer risk locus. International Journal of Cancer, 2020, 147, 2065-2074.	2.3	20
215	Construction of a phylogenetic tree for inbred strains of rat by arbitrarily primed polymerase chain reaction (AP-PCR). Mammalian Genome, 1995, 6, 231-235.	1.0	19
216	Impact of polymorphic variation at 7p15.3, 3p22.1 and 2p23.3 loci on risk of multiple myeloma. British Journal of Haematology, 2012, 158, 805-809.	1.2	19

#	Article	IF	CITATIONS
217	Breast Cancer Risk Factors and Survival by Tumor Subtype: Pooled Analyses from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 623-642.	1.1	19
218	Genetic mapping of the RET protooncogene on rat Chromosome 4. Mammalian Genome, 1995, 6, 433-435.	1.0	18
219	Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1501-1508.	1.1	18
220	Haplotype-Based Analysis of Common Variation in the Growth Hormone Receptor Gene and Prostate Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 169-173.	1.1	17
221	Risk of malignant pleural mesothelioma and polymorphisms in genes involved in the genome stability and xenobiotics metabolism. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 671, 76-83.	0.4	17
222	Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood, 2018, 132, 2040-2052.	0.6	17
223	Hepatocarcinogenesis: A Polygenic Model of Inherited Predisposition to Cancer. Tumori, 1996, 82, 1-5.	0.6	16
224	Allelotyping of pooled DNA with 250 K SNP microarrays. BMC Genomics, 2007, 8, 77.	1.2	16
225	Insulin-like Growth Factor Pathway Genetic Polymorphisms, Circulating IGF1 and IGFBP3, and Prostate Cancer Survival. Journal of the National Cancer Institute, 2014, 106, .	3.0	16
226	Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. Biogerontology, 2015, 16, 353-364.	2.0	16
227	Common genetic variants associated with pancreatic adenocarcinoma may also modify risk of pancreatic neuroendocrine neoplasms. Carcinogenesis, 2018, 39, 360-367.	1.3	16
228	Methodological issues in a prospective study on plasma concentrations of persistent organic pollutants and pancreatic cancer risk within the EPIC cohort. Environmental Research, 2019, 169, 417-433.	3.7	16
229	Mitochondrial DNA Copy-Number Variation and Pancreatic Cancer Risk in the Prospective EPIC Cohort. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 681-686.	1.1	16
230	A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: Results from the IMMEnSE consortium and meta-analysis. Oncotarget, 2016, 7, 59029-59048.	0.8	16
231	Genetic polymorphisms in mediators of inflammation and gastric precancerous lesions. European Journal of Cancer Prevention, 2008, 17, 178-183.	0.6	15
232	POMC and TP53 genetic variability and risk of basal cell carcinoma of skin: Interaction between host and genetic factors. Journal of Dermatological Science, 2011, 63, 47-54.	1.0	15
233	Plasma Carotenoid- and Retinol-Weighted Multi-SNP Scores and Risk of Breast Cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 927-936.	1.1	15
234	Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Scientific Reports, 2016, 6, 39565.	1.6	15

#	Article	IF	CITATIONS
235	SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Scientific Reports, 2017, 7, 43812.	1.6	15
236	Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia. Nature Communications, 2018, 9, 4182.	5.8	15
237	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	3.6	15
238	A 584Âbp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. American Journal of Human Genetics, 2021, 108, 1852-1865.	2.6	15
239	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	2.2	15
240	Common genetic variation of insulin-like growth factor-binding protein 1 (IGFBP-1), IGFBP-3, and acid labile subunit in relation to serum IGF-I levels and mammographic density. Breast Cancer Research and Treatment, 2010, 123, 843-855.	1.1	14
241	Genetics and molecular epidemiology of multiple myeloma: The rationale for the IMMEnSE consortium (Review). International Journal of Oncology, 2011, 40, 625-38.	1.4	14
242	Polymorphisms in xenobiotic transporters ABCB1, ABCG2, ABCC2, ABCC1, ABCC3 and multiple myeloma risk: a case–control study in the context of the International Multiple Myeloma rESEarch (IMMEnSE) consortium. Leukemia, 2012, 26, 1419-1422.	3.3	14
243	Variants Associated with Susceptibility to Pancreatic Cancer and Melanoma Do Not Reciprocally Affect Risk. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1121-1124.	1.1	14
244	ABO blood group alleles and prostate cancer risk: Results from the breast and prostate cancer cohort consortium (BPC3). Prostate, 2015, 75, 1677-1681.	1.2	14
245	Association of genetic polymorphisms with survival of pancreatic ductal adenocarcinoma patients. Carcinogenesis, 2016, 37, 957-964.	1.3	14
246	Do pancreatic cancer and chronic pancreatitis share the same genetic risk factors? A PANcreatic Disease ReseArch (PANDoRA) consortium investigation. International Journal of Cancer, 2018, 142, 290-296.	2.3	14
247	Genetic variants in taste-related genes and risk of pancreatic cancer. Mutagenesis, 2019, 34, 391-394.	1.0	14
248	Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis, 2021, 42, 1037-1045.	1.3	14
249	Distinct Reproductive Risk Profiles for Intrinsic-Like Breast Cancer Subtypes: Pooled Analysis of Population-Based Studies. Journal of the National Cancer Institute, 2022, 114, 1706-1719.	3.0	14
250	T.I.M.S: TaqMan Information Management System, tools to organize data flow in a genotyping laboratory. BMC Bioinformatics, 2005, 6, 246.	1.2	13
251	Could polymorphisms in ATP-binding cassette C3/multidrug resistance associated protein 3 (ABCC3/MRP3) modify colorectal cancer risk?. European Journal of Cancer, 2008, 44, 854-857.	1.3	13
252	Variation in genes coding for AMP-activated protein kinase (AMPK) and breast cancer risk in the European Prospective Investigation on Cancer (EPIC). Breast Cancer Research and Treatment, 2011, 127, 761-767.	1.1	13

#	Article	IF	CITATIONS
253	Comprehensive investigation of genetic variation in the 8q24 region and multiple myeloma risk in the <scp>IMME</scp> n <scp>SE</scp> consortium. British Journal of Haematology, 2012, 157, 331-338.	1.2	13
254	Genetic Variants and Multiple Myeloma Risk: IMMEnSE Validation of the Best Reported Associations—An Extensive Replication of the Associations from the Candidate Gene Era. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 670-674.	1.1	13
255	Genetic Mapping of the Mouse CDC25Mm Gene, a Ras-Specific Guanine Nucleotide-Releasing Factor, to Chromosome 9. Genomics, 1994, 21, 451-453.	1.3	12
256	No Association between Progesterone Receptor Gene +331G/A Polymorphism and Endometrial Cancer. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1415-1416.	1.1	12
257	Haplotype-Based Analysis of Common Variation in the Acetyl-CoA Carboxylase α Gene and Breast Cancer Risk: A Case-Control Study Nested within the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 409-415.	1.1	12
258	Genetic Variability of the mTOR Pathway and Prostate Cancer Risk in the European Prospective Investigation on Cancer (EPIC). PLoS ONE, 2011, 6, e16914.	1.1	12
259	Linkage mapping of the rat Tp53 gene on Chromosome 10. Mammalian Genome, 1996, 7, 630-630.	1.0	11
260	Type 2 diabetes-related variants influence the risk of developing multiple myeloma: results from the IMMEnSE consortium. Endocrine-Related Cancer, 2015, 22, 545-559.	1.6	11
261	Inherited variation in the xenobiotic transporter pathway and survival of multiple myeloma patients. British Journal of Haematology, 2018, 183, 375-384.	1.2	11
262	Genetic polymorphisms in genes of class switch recombination and multiple myeloma risk and survival: an IMMEnSE study. Leukemia and Lymphoma, 2019, 60, 1803-1811.	0.6	11
263	Variations in cag pathogenicity island genes of Helicobacter pylori from Latin American groups may influence neoplastic progression to gastric cancer. Scientific Reports, 2020, 10, 6570.	1.6	11
264	The INSIG2 rs7566605 polymorphism is not associated with body mass index and breast cancer risk. BMC Cancer, 2010, 10, 563.	1.1	10
265	Plasma cotinine levels and pancreatic cancer in the EPIC cohort study. International Journal of Cancer, 2012, 131, 997-1002.	2.3	10
266	Polymorphisms at phase I-metabolizing enzyme and hormone receptor loci influence the response to anti-TNF therapy in rheumatoid arthritis patients. Pharmacogenomics Journal, 2019, 19, 83-96.	0.9	10
267	Genetic polymorphisms in the cag pathogenicity island of Helicobacter pylori and risk of stomach cancer and highâ€grade premalignant gastric lesions. International Journal of Cancer, 2020, 147, 2437-2445.	2.3	10
268	Genetically determined telomere length and multiple myeloma risk and outcome. Blood Cancer Journal, 2021, 11, 74.	2.8	10
269	Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Frontiers in Genetics, 2021, 12, 693933.	1.1	10
270	<i>HYAL2</i> methylation in peripheral blood as a potential marker for the detection of pancreatic cancer: a case control study. Oncotarget, 2017, 8, 67614-67625.	0.8	10

#	Article	IF	CITATIONS
271	Reliable detection of beta-thalassemia and G6PD mutations by a DNA microarray. Clinical Chemistry, 2002, 48, 2051-4.	1.5	10
272	A DATABASE OF SINGLE-NUCLEOTIDE POLYMORPHISMS AND A GENOTYPING MICROARRAY FOR GENETIC EPIDEMIOLOGY OF LUNG CANCER. Experimental Lung Research, 2005, 31, 223-258.	0.5	9
273	Polymorphisms in the Gene Regions of the Adaptor Complex LAMTOR2/LAMTOR3 and Their Association with Breast Cancer Risk. PLoS ONE, 2013, 8, e53768.	1.1	9
274	Association between anthropometry and lifestyle factors and risk of Bâ€cell lymphoma: An exposomeâ€wide analysis. International Journal of Cancer, 2021, 148, 2115-2128.	2.3	9
275	Mendelian randomisation study of smoking exposure in relation to breast cancer risk. British Journal of Cancer, 2021, 125, 1135-1145.	2.9	9
276	Unique spectrum of SPAST variants in Estonian HSP patients: presence of benign missense changes but lack of exonic rearrangements. BMC Neurology, 2010, 10, 17.	0.8	8
277	MAP3K7 and GSTZ1 are associated with human longevity: a two-stage case–control study using a multilocus genotyping. Age, 2013, 35, 1357-1366.	3.0	8
278	A Genome-Wide "Pleiotropy Scan―Does Not Identify New Susceptibility Loci for Estrogen Receptor Negative Breast Cancer. PLoS ONE, 2014, 9, e85955.	1.1	8
279	Identification of miRSNPs associated with the risk of multiple myeloma. International Journal of Cancer, 2017, 140, 526-534.	2.3	8
280	Genetic variability of the ABCC2 gene and clinical outcomes in pancreatic cancer patients. Carcinogenesis, 2019, 40, 544-550.	1.3	8
281	Genetic polymorphisms in inflammatory genes and pancreatic cancer risk: a two-phase study on more than 14 000 individuals. Mutagenesis, 2019, 34, 395-401.	1.0	8
282	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.4	8
283	Identification of Recessively Inherited Genetic Variants Potentially Linked to Pancreatic Cancer Risk. Frontiers in Oncology, 2021, 11, 771312.	1.3	8
284	Genetic variability of the fatty acid synthase pathway is not associated with prostate cancer risk in the European Prospective Investigation on Cancer (EPIC). European Journal of Cancer, 2011, 47, 420-427.	1.3	7
285	Genetic variability of the forkhead box O3 and prostate cancer risk in the European Prospective Investigation on Cancer. Oncology Reports, 2011, 26, 979-86.	1.2	7
286	Do myeloproliferative neoplasms and multiple myeloma share the same genetic susceptibility loci?. International Journal of Cancer, 2021, 148, 1616-1624.	2.3	7
287	Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Research, 2021, 23, 86.	2.2	7
288	Validation of Genetic Markers Associated with Survival in Colorectal Cancer Patients Treated with Oxaliplatin-Based Chemotherapy. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 352-361.	1.1	7

#	Article	IF	CITATIONS
289	Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genetics, 2005, preprint, e68.	1.5	6
290	Mendelian Randomization Analysis of n-6 Polyunsaturated Fatty Acid Levels and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2735-2739.	1.1	6
291	Genetically Determined Height and Risk of Non-hodgkin Lymphoma. Frontiers in Oncology, 2019, 9, 1539.	1.3	6
292	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	2.6	6
293	A Genome-Wide Gene-Based Gene–Environment Interaction Study of Breast Cancer in More than 90,000 Women. Cancer Research Communications, 2022, 2, 211-219.	0.7	6
294	Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). BMC Cancer, 2009, 9, 257.	1.1	5
295	Genetic variability in the <i>PRKCI</i> gene and prostate cancer risk. Cell Cycle, 2012, 11, 209-209.	1.3	5
296	Polymorphisms in regulators of xenobiotic transport and metabolism genes PXR and CAR do not affect multiple myeloma risk: a case–control study in the context of the IMMEnSE consortium. Journal of Human Genetics, 2013, 58, 155-159.	1.1	5
297	Lack of Association for Reported Endocrine Pancreatic Cancer Risk Loci in the PANDoRA Consortium. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1349-1351.	1.1	5
298	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	1.6	5
299	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	1.1	5
300	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.4	5
301	CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers. British Journal of Cancer, 2021, 124, 842-854.	2.9	5
302	Polymorphisms within the TNFSF4 and MAPKAPK2 Loci Influence the Risk of Developing Invasive Aspergillosis: A Two-Stage Case Control Study in the Context of the aspBIOmics Consortium. Journal of Fungi (Basel, Switzerland), 2021, 7, 4.	1.5	5
303	A polygenic risk score for multiple myeloma risk prediction. European Journal of Human Genetics, 2022, 30, 474-479.	1.4	5
304	Expression in lung tumors and genetic mapping of the novel murine protein kinase Cl̂. Molecular Carcinogenesis, 1994, 9, 111-113.	1.3	4
305	Polymorphisms in genes related to one-carbon metabolism are not related to pancreatic cancer in PanScan and PanC4. Cancer Causes and Control, 2013, 24, 595-602.	0.8	4
306	Mediating effect of soluble B-cell activation immune markers on the association between anthropometric and lifestyle factors and lymphoma development. Scientific Reports, 2020, 10, 13814.	1.6	4

#	Article	IF	CITATIONS
307	Healthy lifestyle and the risk of lymphoma in the European Prospective Investigation into Cancer and Nutrition study. International Journal of Cancer, 2020, 147, 1649-1656.	2.3	4
308	Genetic Polymorphisms Involved in Mitochondrial Metabolism and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2342-2345.	1.1	4
309	Cereblon (<i>CRBN</i>) gene polymorphisms predict clinical response and progression-free survival in relapsed/refractory multiple myeloma patients treated with lenalidomide: a pharmacogenetic study from the IMMEnSE consortium. Leukemia and Lymphoma, 2020, 61, 699-706.	0.6	3
310	Common gene variants within 3′â€untranslated regions as modulators of multiple myeloma risk and survival. International Journal of Cancer, 2021, 148, 1887-1894.	2.3	3
311	Expression quantitative trait loci of genes predicting outcome are associated with survival of multiple myeloma patients. International Journal of Cancer, 2021, 149, 327-336.	2.3	3
312	Are Circulating Immune Cells a Determinant of Pancreatic Cancer Risk? A Prospective Study Using Epigenetic Cell Count Measures. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2179-2187.	1.1	3
313	Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis, 2005, 26, 1157-1157.	1.3	2
314	Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Human Molecular Genetics, 2013, 22, 4239-4239.	1.4	2
315	Interactions between breast cancer susceptibility loci and menopausal hormone therapy in relationship to breast cancer in the Breast and Prostate Cancer Cohort Consortium. Breast Cancer Research and Treatment, 2016, 155, 531-540.	1.1	2
316	Carbohydrate antigen 19-9 and apolipoprotein A2 isoform as early detection biomarkers for pancreatic cancer: A prospective evaluation by the EPIC study. Annals of Oncology, 2018, 29, viii41.	0.6	2
317	Host immune genetic variations influence the risk of developing acute myeloid leukaemia: results from the NuCLEAR consortium. Blood Cancer Journal, 2020, 10, 75.	2.8	2
318	Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Scientific Reports, 2020, 10, 9688.	1.6	2
319	Susceptibility loci for pancreatic cancer in the Brazilian population. BMC Medical Genomics, 2021, 14, 111.	0.7	2
320	Lack of association of CD44-rs353630 and CHI3L2-rs684559 with pancreatic ductal adenocarcinoma survival. Scientific Reports, 2021, 11, 7570.	1.6	2
321	Germline variants and breast cancer survival in patients with distant metastases at primary breast cancer diagnosis. Scientific Reports, 2021, 11, 19787.	1.6	2
322	A Meta-Analysis Of Genome-Wide Association Studies Of Multiple Myeloma In Cases and Controls Of European Origin Identifies a Risk Locus In 12q23.1. Blood, 2013, 122, 3111-3111.	0.6	2
323	Does a Multiple Myeloma Polygenic Risk Score Predict Overall Survival of Myeloma Patients?. Cancer Epidemiology Biomarkers and Prevention, 0, , .	1.1	2
324	Do pancreatic adenocarcinomas and neuroendocrine neoplasms share genetic susceptibility a PANDoRA study. Pancreatology, 2017, 17, S32.	0.5	1

#	Article	IF	CITATIONS
325	TAS2R38 polymorphisms, Helicobacter pylori infection and susceptibility to gastric cancer and premalignant gastric lesions. European Journal of Cancer Prevention, 2022, 31, 401-407.	0.6	1
326	Genome-wide association study of mitochondrial copy number. Human Molecular Genetics, 2022, 31, 1346-1355.	1.4	1
327	Validation and functional characterization of GWAS-identified variants for chronic lymphocytic leukemia: a CRuCIAL study. Blood Cancer Journal, 2022, 12, 79.	2.8	1
328	Determinants of the t(14;18) translocation and their role in t(14;18)-positive follicular lymphoma. Cancer Causes and Control, 2015, 26, 1845-1855.	0.8	0
329	Genetic determinants of telomere length and risk of pancreatic cancer: a PANDoRA study. Pancreatology, 2017, 17, S22.	0.5	0
330	A comprehensive analysis of polymorphic variants in steroid hormone and insulinâ€like growth factorâ€1 metabolism and risk of <i>in situ</i> breast cancer: Results from the Breast and Prostate Cancer Cohort Consortium. International Journal of Cancer, 2018, 142, 1182-1188.	2.3	0
331	Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes. , 2021, 5, 200-217.		Ο
332	Polymorphisms in Regulators of Xenobiotic Transport and Metabolism Genes NR1I2 and NR1I3 and Multiple Myeloma Risk: A Case-Control Study in the Context of IMMEnSE Consortium. Blood, 2011, 118, 5014-5014.	0.6	0
333	Mechanism of Resistance to Azacitidine in Myelodisplastic Syndromes Blood, 2012, 120, 2810-2810.	0.6	0
334	Abstract 3411: Rare BRCA2 K3326X increases susceptibility to sporadic pancreatic ductal adenocarcinoma: a PANDoRA study. , 2017, , .		0
335	Abstract 1200: Associations between genetically predicted blood protein biomarkers and pancreatic ductal adenocarcinoma risk. , 2020, , .		0
336	Abstract 1580: Genetic variability of H3K27me modifier genes <i>EZH2</i> , <i>KDM6A</i> and <i>KDM6B</i> in association with pancreatic cancer risk. , 2019, , .		0