
Irene V Bijnsdorp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4436113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secreted protein markers in oral squamous cell carcinoma (OSCC). Clinical Proteomics, 2022, 19, 4.	2.1	12
2	Feasibility of phosphoproteomics to uncover oncogenic signalling in secreted extracellular vesicles using glioblastoma-EGFRVIII cells as a model. Journal of Proteomics, 2021, 232, 104076.	2.4	5
3	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	12.2	182
4	Lipopolysaccharideâ€regulated secretion of soluble and vesicleâ€based proteins from a panel of colorectal cancer cell lines. Proteomics - Clinical Applications, 2021, 15, 1900119.	1.6	2
5	Longitudinal stability of urinary extracellular vesicle protein patterns within and between individuals. Scientific Reports, 2021, 11, 15629.	3.3	6
6	DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery. Genomics, Proteomics and Bioinformatics, 2020, 18, 104-119.	6.9	51
7	Prostate Cancer Development Is Not Affected by Statin Use in Patients with Elevated PSA Levels. Cancers, 2019, 11, 953.	3.7	6
8	Urinary exosomal proteins as (panâ€)cancer biomarkers: insights from the proteome. FEBS Letters, 2019, 593, 1580-1597.	2.8	46
9	Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies. Journal of Proteomics, 2019, 192, 27-36.	2.4	22
10	Large-Scale Urinary Proteome Dataset Across Tumor Types Reveals Candidate Biomarkers for Lung Cancer. EBioMedicine, 2018, 30, 5-6.	6.1	5
11	Plasma FGF23 is not elevated in prostate cancer. Clinica Chimica Acta, 2018, 478, 129-131.	1.1	3
12	Feasibility of urinary extracellular vesicle proteome profiling using a robust and simple, clinically applicable isolation method. Journal of Extracellular Vesicles, 2017, 6, 1313091.	12.2	51
13	The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice. Molecular Diagnosis and Therapy, 2017, 21, 385-400.	3.8	18
14	Targeted proteomics in urinary extracellular vesicles identifies biomarkers for diagnosis and prognosis of prostate cancer. Oncotarget, 2017, 8, 4960-4976.	1.8	80
15	Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget, 2016, 7, 22566-22578.	1.8	113
16	Protein Complexes in Urine Interfere with Extracellular Vesicle Biomarker Studies. Journal of Circulating Biomarkers, 2016, 5, 4.	1.3	40
17	miR-129-3p controls centrosome number in metastatic prostate cancer cells by repressing CP110. Oncotarget, 2016, 7, 16676-16687.	1.8	20
18	Nontemplated Nucleotide Additions Distinguish the Small RNA Composition in Cells from Exosomes. Cell Reports, 2014, 8, 1649-1658.	6.4	484

IRENE V BIJNSDORP

#	Article	IF	CITATIONS
19	Radiosensitization by Thymidine Phosphorylase Inhibitor in Thymidine Phosphorylase Negative and Overexpressing Bladder Cancer Cell Lines. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 413-421.	1.1	8
20	The novel thymidylate synthase inhibitor trifluorothymidine (TFT) and TRAIL synergistically eradicate non-small cell lung cancer cells. Cancer Chemotherapy and Pharmacology, 2014, 73, 1273-1283.	2.3	12
21	Serum testosterone plays an important role in the metastatic ability of castration resistant prostate cancer. World Journal of Urology, 2013, 31, 261-266.	2.2	5
22	Exosomal ITGA3Âinterferes with non ancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. Journal of Extracellular Vesicles, 2013, 2, .	12.2	125
23	Profiling of the calcitonin-calcitonin receptor axis in primary prostate cancer: Clinical implications and molecular correlates. Oncology Reports, 2013, 30, 1265-1274.	2.6	9
24	ABCC4 Decreases docetaxel and not cabazitaxel efficacy in prostate cancer cells in vitro. Anticancer Research, 2013, 33, 387-91.	1.1	32
25	A predictive role for noncancerous prostate cells: low connexin-26 expression in radical prostatectomy tissues predicts metastasis. British Journal of Cancer, 2012, 107, 1963-1968.	6.4	10
26	TAS-102: more than an antimetabolite. Lancet Oncology, The, 2012, 13, e518-e519.	10.7	10
27	Analysis of Drug Interactions. Methods in Molecular Biology, 2011, 731, 421-434.	0.9	189
28	Lipophilic Prodrugs and Formulations of Conventional (Deoxy)Nucleoside and Fluoropyrimidine Analogs in Cancer. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1168-1180.	1.1	10
29	Cellular pharmacology of multi- and duplex drugsconsisting of ethynylcytidine and 5-fluoro-2′-deoxyuridine. Investigational New Drugs, 2011, 29, 248-257.	2.6	12
30	Trifluorothymidine Resistance Is Associated with Decreased Thymidine Kinase and Equilibrative Nucleoside Transporter Expression or Increased Secretory Phospholipase A2. Molecular Cancer Therapeutics, 2010, 9, 1047-1057.	4.1	26
31	Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5â€fluorouracil in colon cancer cells. International Journal of Cancer, 2010, 126, 2457-2468.	5.1	80
32	Molecular mechanism underlying the synergistic interaction between trifluorothymidine and the epidermal growth factor receptor inhibitor erlotinib in human colorectal cancer cell lines. Cancer Science, 2010, 101, 440-447.	3.9	27
33	Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells. Journal of Neuro-Oncology, 2007, 85, 25-31.	2.9	27

3