Carme Bosch

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4435646/carme-bosch-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 18 962 13 h-index g-index citations papers 8.1 18 3.69 1,102 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
18	C characteristics of organic carbon in the atmosphere and at glacier region of the Tibetan Plateau <i>Science of the Total Environment</i> , 2022 , 832, 155020	10.2	O
17	Exploring the use of tertiary reclaimed water in dairy cattle production. <i>Journal of Cleaner Production</i> , 2019 , 229, 964-973	10.3	5
16	Important fossil source contribution to brown carbon in Beijing during winter. <i>Scientific Reports</i> , 2017 , 7, 43182	4.9	82
15	Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. <i>Nature Communications</i> , 2016 , 7, 12	.57 / 1.4	199
14	Vertical profiles of optical and microphysical particle properties above the northern Indian Ocean during CARDEX 2012. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1045-1064	6.8	12
13	Enantiomeric fraction and isomeric composition to assess sources of DDT residues in soils. <i>Chemosphere</i> , 2015 , 138, 40-6	8.4	27
12	Apportioned contributions of PM2.5 fine aerosol particles over the Maldives (northern Indian Ocean) from local sources vs long-range transport. <i>Science of the Total Environment</i> , 2015 , 536, 72-78	10.2	13
11	Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. <i>Atmospheric Environment</i> , 2015 , 121, 4-12	5.3	136
10	Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle. <i>Environmental Research Letters</i> , 2015 , 10, 064004	6.2	32
9	Source Apportionment of Polycyclic Aromatic Hydrocarbons in Central European Soils with Compound-Specific Triple Isotopes ([13]C, [14]C, and [2]H). <i>Environmental Science & Environmental Science & E</i>	10.3	50
8	Impacts of atmospheric chlor-alkali factory emissions in surrounding populations. <i>Environment International</i> , 2014 , 65, 1-8	12.9	11
7	Analysis of hepatic deiodinase 2 mRNA levels in natural fish lake populations exposed to different levels of putative thyroid disrupters. <i>Environmental Pollution</i> , 2014 , 187, 210-3	9.3	7
6	Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 11,743-11,759	4.4	95
5	Integrated biological and chemical analysis of organochlorine compound pollution and of its biological effects in a riverine system downstream the discharge point. <i>Science of the Total Environment</i> , 2010 , 408, 5592-9	10.2	22
4	Human health risk assessment of environmental exposure to organochlorine compounds in the Catalan stretch of the Ebro River, Spain. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2009 , 83, 662-7	2.7	21
3	Optimization of a heart-cutting multidimensional gas chromatography-based method for the assessment of enantiomeric fractions of o,peDDT in environmental samples. <i>Journal of Chromatography A</i> , 2009 , 1216, 6141-5	4.5	20
2	Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry. <i>Aquatic Toxicology</i> , 2009 , 94, 16-27	5.1	46

Thermal degradation of glucosinolates in red cabbage. *Food Chemistry*, **2006**, 95, 19-29

8.5 184