Iraida A Kirovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/443560/publications.pdf Version: 2024-02-01

IDAIDA A KIDOVSKAVA

#	Article	IF	CITATIONS
1	The catalytic and photocatalytic properties of InP-CdS and ZnTe-CdS system components. Russian Journal of Physical Chemistry A, 2011, 85, 557-560.	0.6	11
2	Adsorption properties of CdS-CdTe system semiconductors. Russian Journal of Physical Chemistry A, 2013, 87, 2077-2081.	0.6	10
3	Synthesis and Optical Absorption of Solid Solutions between InSb and II–VI Compounds. Inorganic Materials, 2002, 38, 91-94.	0.8	9
4	Adsorption activity and selectivity of the surface of InP-CdS system semiconductors with respect to to toxic microimpurities. Russian Journal of Physical Chemistry A, 2010, 84, 661-667.	0.6	6
5	Adsorption and electrophysical studies of the sensitivity and selectivity of the surface of the InSb-CdTe system with respect to toxic gases. Russian Journal of Physical Chemistry A, 2008, 82, 830-834.	0.6	5
6	Adsorption and electrophysical properties of semiconductors of the InSb-CdS system. Russian Journal of Physical Chemistry A, 2012, 86, 639-644.	0.6	5
7	Obtaining Hetero- substituted Semiconductor Materials (ZnSe)x (CdS)1-x and their Crystallochemical and Structural Properties. Procedia Engineering, 2016, 152, 681-688.	1.2	5
8	Bulk and surface properties of ZnTe–ZnS system semiconductors. Russian Journal of Physical Chemistry A, 2016, 90, 2029-2034.	0.6	5
9	Preparation and identification of substitutional solid solutions of the InSb-CdTe system. Russian Journal of Inorganic Chemistry, 2006, 51, 645-648.	1.3	4
10	Adsorption, electrophysical, and optical studies of the surface of solid solutions and the binary components of the InSb-ZnTe system. Russian Journal of Physical Chemistry A, 2009, 83, 2322-2330.	0.6	4
11	New catalysts for the oxidation of carbon monoxide. Russian Journal of Physical Chemistry A, 2012, 86, 14-18.	0.6	4
12	Adsorption of gases on binary and multicomponent semiconductors of the ZnSe-CdTe system. Russian Journal of Physical Chemistry A, 2011, 85, 1971-1976.	0.6	3
13	Crystallochemical, Structural and Surface-active Properties of (ZnTe)x(CdSe)1-x Semi-conductor Devices. Procedia Engineering, 2015, 113, 456-460.	1.2	3
14	Thermodesorptive analysis of GaAs and ZnSe surfaces. Talanta, 1985, 32, 57-59.	5.5	2
15	Preparation and Properties of ZnxCd1 – xSe Solid Solutions. Inorganic Materials, 2001, 37, 769-772.	0.8	2
16	Chemical composition and acid-base properties of the surface of GaAs-CdS solid solutions. Russian Journal of Physical Chemistry A, 2007, 81, 96-101.	0.6	2
17	The adsorption of gases on the surface of solid solutions and binary compounds of the GaSb-ZnTe system. Russian Journal of Physical Chemistry A, 2007, 81, 1532-1536.	0.6	2
18	Bulk physicochemical properties of solid solutions and binary components of the InSb—CdS system. Russian Journal of Physical Chemistry A, 2012, 86, 325-329.	0.6	2

IRAIDA A KIROVSKAYA

#	Article	IF	CITATIONS
19	Surface properties of semiconductor analogs of CdBVI and their solid substitution solutions. Russian Journal of Physical Chemistry A, 2016, 90, 522-529.	0.6	2
20	Parallels and Interrelated Regularities in the Change of the Bulk and Surface Properties of CdBVI–CdTe Systems. Journal of Surface Investigation, 2018, 12, 968-973.	0.5	2
21	Comparative Physical-Chemical Properties of Binary and Multicomponent Semiconductors in CdS–ZnSe and CdS–ZnS Systems. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 834-839.	1.1	2
22	New catalysts and adsorbents on the basis of the InSb-CdTe semiconducting system. Russian Journal of Physical Chemistry A, 2007, 81, 535-543.	0.6	1
23	Adsorption properties of GaAs-CdS system. Russian Journal of Physical Chemistry A, 2007, 81, 654-658.	0.6	1
24	The structure and chemical and acid-base state of the surface of solid solutions and binary components in the InSb-CdS system. Russian Journal of Physical Chemistry A, 2012, 86, 432-436.	0.6	1
25	Comparative adsorption and catalytic properties of CDSE-CDTE system components in carbon oxide (II) oxidation reaction. , 2014, , .		1
26	Oxidation and hydrogenation of carbon(II) oxide on the semiconductors of the InSb-CdTe system. Russian Journal of Physical Chemistry A, 2015, 89, 1286-1292.	0.6	1
27	Rapid Surface Sensitivity and Selectivity Determination of New Materials Based on CdS, ZnS. Procedia Engineering, 2016, 152, 634-638.	1.2	1
28	The System Binary Components CdSe - AllBVI Impact on Surface Activity. Procedia Engineering, 2016, 152, 664-671.	1.2	1
29	Surface-active state of semiconductor materials based on CdTe–AIIS systems. AIP Conference Proceedings, 2017, , .	0.4	1
30	On the Acid–Base State of the Surface of Semiconductor Components of the ZnSe–CdS System Exposed to Different Media. Journal of Surface Investigation, 2018, 12, 75-79.	0.5	1
31	Adsorptive and Electrical Properties of InSb–ZnSe Films. Inorganic Materials, 2003, 39, 1246-1250.	0.8	0
32	The catalytic properties of the InSb-CdTe system in the hydrogenation of carbon monoxide. Russian Journal of Physical Chemistry A, 2007, 81, 1217-1220.	0.6	0
33	Preparation and properties of new materials: Solid solutions (GaSb) x (ZnTe)1â^'x. Russian Journal of Physical Chemistry A, 2010, 84, 820-825.	0.6	0
34	Comparative acid-base properties of the surface of components of the CdTe-ZnS system in series of substitutional solid solutions and their analogs. Russian Journal of Physical Chemistry A, 2011, 85, 1228-1232.	0.6	0
35	Crystal-chemical, spectroscopic and electrical properties of solid solutions and binary components Cds — CdTe system. , 2014, , .		0
36	The Effect of the Anionic Component on the Surface Properties of the Binary Semiconductors-analogues and their Solid Substitution Solutions. Procedia Engineering, 2015, 113, 461-465.	1.2	0

IRAIDA A KIROVSKAYA

#	Article	IF	CITATIONS
37	The Activity of New Materials Surfaces - ternary Semi-conductors with Cationic and Anionic Substitution. Procedia Engineering, 2015, 113, 446-450.	1.2	0
38	IR Spectroscopic and Electrophysical Studies of Adsorptive and Electronic Interactions on the Surface of GaSb(ZnTe) Semi-conductors, Sensors Materials. Procedia Engineering, 2015, 113, 451-455.	1.2	0
39	Optical properties of alloys based on II-S and II-Te chalcogenides. Semiconductors, 2015, 49, 313-318.	0.5	0
40	The Original Correlations in the Structural Properties and Surface Activity Changes of the CdSe-CdTe System Semiconductors. Procedia Engineering, 2016, 152, 627-633.	1.2	0
41	Opportunities of Searching New Materials of Ecological Application on the Basis of Structural Investigations of Semiconductors in the System CdTe-CdS. Procedia Engineering, 2016, 152, 647-654.	1.2	0
42	The Surface Activity Forecast Implementation of the Semiconductor Materials ZnTe (AIIIBV) and ZnTe (AIIBIV) for the Gas Analysis. Procedia Engineering, 2016, 152, 551-555.	1.2	0
43	The influence of the composition on the electronic state and activity of the semiconductor surfaces AllIBV-ZnTe, AllBVI-ZnTe. AlP Conference Proceedings, 2017, , .	0.4	0
44	The possibilities of searching for new materials based on isocationic analogs of ZnBVI. AIP Conference Proceedings, 2017, , .	0.4	0
45	New materials based on CdTe-AllBVI systems with cationic and anionic substitution. Bulk and surface properties. AlP Conference Proceedings, 2017, , .	0.4	0
46	Obtaining, bulk physical and chemical properties, certification of heterosystem InSb-ZnS solid solutions. Journal of Physics: Conference Series, 2018, 944, 012046.	0.4	0
47	Possibilities of new materials surface sensibility express determination based on ZnSe-CdS system by pH isoelectric state measurements of the surface state. Journal of Physics: Conference Series, 2018, 944, 012048.	0.4	0
48	Mechanochemical activation and gallium and indiaarsenides surface catalycity. Journal of Physics: Conference Series, 2018, 944, 012047.	0.4	0
49	Surface-active and electrophysical semiconductors properties of the CdTe-CdSe system. Journal of Physics: Conference Series, 2018, 944, 012049.	0.4	0