
Stanley T Crooke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4435539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Addressing the Needs of Patients with Ultra-Rare Mutations One Patient at a Time: The n-Lorem Approach. Nucleic Acid Therapeutics, 2022, 32, 95-100.	2.0	10
2	Meeting the needs of patients with ultrarare diseases. Trends in Molecular Medicine, 2022, 28, 87-96.	3.5	8
3	RNA modifications can affect RNase H1-mediated PS-ASO activity. Molecular Therapy - Nucleic Acids, 2022, 28, 814-828.	2.3	7
4	Progress in molecular biology and translational science addressing the needs of nano-rare patients. Progress in Molecular Biology and Translational Science, 2022, , 127-146.	0.9	1
5	Establishing an environment in which rigorous scientific inquiry is practiced: a personal journey. Nucleic Acids Research, 2022, 50, 7216-7223.	6.5	0
6	Antisense drug discovery and development technology considered in a pharmacological context. Biochemical Pharmacology, 2021, 189, 114196.	2.0	55
7	Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins. Nucleic Acids Research, 2021, 49, 2721-2739.	6.5	10
8	Site-specific incorporation of 5′-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Research, 2021, 49, 1828-1839.	6.5	26
9	Antisense technology: an overview and prospectus. Nature Reviews Drug Discovery, 2021, 20, 427-453.	21.5	299
10	Site-specific Incorporation of 2′,5′-Linked Nucleic Acids Enhances Therapeutic Profile of Antisense Oligonucleotides. ACS Medicinal Chemistry Letters, 2021, 12, 922-927.	1.3	13
11	Solid-Phase Separation of Toxic Phosphorothioate Antisense Oligonucleotide-Protein Nucleolar Aggregates Is Cytoprotective. Nucleic Acid Therapeutics, 2021, 31, 126-144.	2.0	10
12	A call to arms against ultra-rare diseases. Nature Biotechnology, 2021, 39, 671-677.	9.4	22
13	Golgi-58K can re-localize to late endosomes upon cellular uptake of PS-ASOs and facilitates endosomal release of ASOs. Nucleic Acids Research, 2021, 49, 8277-8293.	6.5	7
14	Hsc70 Facilitates Mannose-6-Phosphate Receptor-Mediated Intracellular Trafficking and Enhances Endosomal Release of Phosphorothioate-Modified Antisense Oligonucleotides. Nucleic Acid Therapeutics, 2021, 31, 284-297.	2.0	4
15	Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Research, 2021, 49, 9026-9041.	6.5	61
16	Antisense technology: A review. Journal of Biological Chemistry, 2021, 296, 100416.	1.6	149
17	Perinuclear positioning of endosomes can affect PS-ASO activities. Nucleic Acids Research, 2021, 49, 12970-12985.	6.5	3
18	Golgi-endosome transport mediated by M6PR facilitates release of antisense oligonucleotides from endosomes. Nucleic Acids Research, 2020, 48, 1372-1391.	6.5	32

2

#	Article	IF	CITATIONS
19	The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. Journal of the American Chemical Society, 2020, 142, 14754-14771.	6.6	77
20	Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity. Nucleic Acids Research, 2020, 48, 9840-9858.	6.5	14
21	Phosphorothioate modified oligonucleotide–protein interactions. Nucleic Acids Research, 2020, 48, 5235-5253.	6.5	163
22	Interaction of ASOs with PC4 Is Highly Influenced by the Cellular Environment and ASO Chemistry. Journal of the American Chemical Society, 2020, 142, 9661-9674.	6.6	10
23	Origins of the Increased Affinity of Phosphorothioate-Modified Therapeutic Nucleic Acids for Proteins. Journal of the American Chemical Society, 2020, 142, 7456-7468.	6.6	56
24	Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms. Nucleic Acid Therapeutics, 2020, 30, 312-324.	2.0	7
25	Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Nucleic Acids Research, 2020, 48, 1691-1700.	6.5	63
26	Phosphorothioate Antisense Oligonucleotides Bind P-Body Proteins and Mediate P-Body Assembly. Nucleic Acid Therapeutics, 2019, 29, 343-358.	2.0	9
27	Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Research, 2019, 47, 5465-5479.	6.5	77
28	Lipid Conjugates Enhance Endosomal Release of Antisense Oligonucleotides Into Cells. Nucleic Acid Therapeutics, 2019, 29, 245-255.	2.0	48
29	mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway. Nucleic Acids Research, 2019, 47, 6900-6916.	6.5	32
30	Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nature Biotechnology, 2019, 37, 640-650.	9.4	205
31	Kinetic and subcellular analysis of PS-ASO/protein interactions with P54nrb and RNase H1. Nucleic Acids Research, 2019, 47, 10865-10880.	6.5	27
32	Integrated Assessment of the Clinical Performance of GalNAc ₃ -Conjugated 2′- <i>O</i> -Methoxyethyl Chimeric Antisense Oligonucleotides: I. Human Volunteer Experience. Nucleic Acid Therapeutics, 2019, 29, 16-32.	2.0	85
33	Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Research, 2018, 46, 3579-3594.	6.5	58
34	RNA-Targeted Therapeutics. Cell Metabolism, 2018, 27, 714-739.	7.2	556
35	Acute hepatotoxicity of 2′ fluoro-modified 5–10–5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Research, 2018, 46, 2204-2217.	6.5	71
36	Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Nucleic Acids Research, 2018, 46, 293-313.	6.5	15

#	Article	IF	CITATIONS
37	The Effects of 2′- <i>O</i> -Methoxyethyl Oligonucleotides on Renal Function in Humans. Nucleic Acid Therapeutics, 2018, 28, 10-22.	2.0	55
38	Membrane Destabilization Induced by Lipid Species Increases Activity of Phosphorothioate-Antisense Oligonucleotides. Molecular Therapy - Nucleic Acids, 2018, 13, 686-698.	2.3	15
39	COPII vesicles can affect the activity of antisense oligonucleotides by facilitating the release of oligonucleotides from endocytic pathways. Nucleic Acids Research, 2018, 46, 10225-10245.	6.5	31
40	The Effects of 2′- <i>O</i> -Methoxyethyl Containing Antisense Oligonucleotides on Platelets in Human Clinical Trials. Nucleic Acid Therapeutics, 2017, 27, 121-129.	2.0	101
41	Molecular Mechanisms of Antisense Oligonucleotides. Nucleic Acid Therapeutics, 2017, 27, 70-77.	2.0	255
42	Cellular uptake and trafficking of antisense oligonucleotides. Nature Biotechnology, 2017, 35, 230-237.	9.4	416
43	Intra-endosomal trafficking mediated by lysobisphosphatidic acid contributes to intracellular release of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Research, 2017, 45, 5309-5322.	6.5	60
44	Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Research, 2017, 45, 9528-9546.	6.5	83
45	RNA Therapeutics in Oncology: Advances, Challenges, and Future Directions. Journal of Clinical Pharmacology, 2017, 57, S43-S59.	1.0	46
46	RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Molecular Therapy, 2017, 25, 2075-2092.	3.7	168
47	Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides. Nucleic Acids Research, 2017, 45, 10649-10671.	6.5	50
48	Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. Nucleic Acids Research, 2017, 45, 10672-10692.	6.5	44
49	Depletion of NEAT1 IncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation. PLoS ONE, 2017, 12, e0173494.	1.1	26
50	Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions. PLoS ONE, 2016, 11, e0161930.	1.1	57
51	Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nature Biotechnology, 2016, 34, 875-880.	9.4	137
52	Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides. Nucleic Acids Research, 2016, 44, gkw595.	6.5	58
53	Integrated Safety Assessment of 2â€2-O-Methoxyethyl Chimeric Antisense Oligonucleotides in NonHuman Primates and Healthy Human Volunteers. Molecular Therapy, 2016, 24, 1771-1782.	3.7	91
54	Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet, The, 2016, 388, 2239-2253.	6.3	584

#	Article	IF	CITATIONS
55	Viable <i>RNaseH1</i> knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function. Nucleic Acids Research, 2016, 44, 5299-5312.	6.5	84
56	RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Research, 2016, 44, 3351-3363.	6.5	57
57	Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Research, 2016, 44, 2093-2109.	6.5	142
58	Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2′-modifications and enhances antisense activity. Nucleic Acids Research, 2016, 44, 3892-3907.	6.5	65
59	The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Research, 2015, 43, 8955-8963.	6.5	59
60	Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Research, 2015, 43, 2927-2945.	6.5	151
61	2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Research, 2015, 43, 4569-4578.	6.5	97
62	Clinical and Preclinical Pharmacokinetics and Pharmacodynamics of Mipomersen (Kynamro®): A Second-Generation Antisense Oligonucleotide Inhibitor of Apolipoprotein B. Clinical Pharmacokinetics, 2015, 54, 133-146.	1.6	138
63	Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Research, 2015, 43, 2993-3011.	6.5	67
64	Health Security Preparedness and Industry Trends. Health Security, 2015, 13, 74-81.	0.9	1
65	Antisense Oligonucleotides Capable of Promoting Specific Target mRNA Reduction via Competing RNase H1-Dependent and Independent Mechanisms. PLoS ONE, 2014, 9, e108625.	1.1	56
66	TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Research, 2014, 42, 7819-7832.	6.5	80
67	Phosphorothioate oligonucleotides can displace <i>NEAT1</i> RNA and form nuclear paraspeckle-like structures. Nucleic Acids Research, 2014, 42, 8648-8662.	6.5	87
68	Defining the Factors That Contribute to On-Target Specificity of Antisense Oligonucleotides. PLoS ONE, 2014, 9, e101752.	1.1	45
69	Targeting of Repeated Sequences Unique to a Gene Results in Significant Increases in Antisense Oligonucleotide Potency. PLoS ONE, 2014, 9, e110615.	1.1	17
70	Antisense Oligonucleotide Inhibition of Apolipoprotein C-III Reduces Plasma Triglycerides in Rodents, Nonhuman Primates, and Humans. Circulation Research, 2013, 112, 1479-1490.	2.0	326
71	Lipid Nanoparticles Improve Activity of Single-Stranded siRNA and Gapmer Antisense Oligonucleotides in Animals. ACS Chemical Biology, 2013, 8, 1402-1406.	1.6	41
72	Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 455-468.	0.9	36

#	Article	IF	CITATIONS
73	RNA directed therapeutics: mechanisms and status. Drug Discovery Today: Therapeutic Strategies, 2013, 10, e109-e117.	0.5	3
74	RNA helicase A is not required for RISC activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1092-1101.	0.9	10
75	Clinical pharmacological properties of mipomersen (<scp>K</scp> ynamro), a second generation antisense inhibitor of apolipoprotein <scp>B</scp> . British Journal of Clinical Pharmacology, 2013, 76, 269-276.	1.1	145
76	Human RNase H1 Is Associated with Protein P32 and Is Involved in Mitochondrial Pre-rRNA Processing. PLoS ONE, 2013, 8, e71006.	1.1	43
77	siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs. Nucleic Acids Research, 2012, 40, 6223-6234.	6.5	10
78	Single-Stranded RNAs Use RNAi to Potently and Allele-Selectively Inhibit Mutant Huntingtin Expression. Cell, 2012, 150, 895-908.	13.5	250
79	Single-Stranded siRNAs Activate RNAi in Animals. Cell, 2012, 150, 883-894.	13.5	239
80	Renovation of the new medicine regulatory process. Clinical Research and Regulatory Affairs, 2011, 28, 81-86.	2.1	0
81	Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing. Nucleic Acids Research, 2011, 39, 4875-4889.	6.5	50
82	Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Research, 2011, 39, e13-e13.	6.5	62
83	U1 adaptors result in reduction of multiple pre-mRNA species principally by sequestering U1snRNP. Nucleic Acids Research, 2011, 39, e71-e71.	6.5	19
84	Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet, The, 2010, 375, 998-1006.	6.3	813
85	Binding and Cleavage Specificities of Human Argonaute2. Journal of Biological Chemistry, 2009, 284, 26017-26028.	1.6	104
86	Off-target and a portion of target-specific siRNA mediated mRNA degradation is Ago2 â€ [~] Slicer' independent and can be mediated by Ago1. Nucleic Acids Research, 2009, 37, 6927-6941.	6.5	31
87	Human Dicer Binds Short Single-strand and Double-strand RNA with High Affinity and Interacts with Different Regions of the Nucleic Acids. Journal of Biological Chemistry, 2009, 284, 2535-2548.	1.6	42
88	Human RNase H1 Discriminates between Subtle Variations in the Structure of the Heteroduplex Substrate. Molecular Pharmacology, 2007, 71, 83-91.	1.0	82
89	Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells. Nucleic Acids Research, 2007, 35, 6598-6610.	6.5	83
90	The Positional Influence of the Helical Geometry of the Heteroduplex Substrate on Human RNase H1 Catalysis. Molecular Pharmacology, 2007, 71, 73-82.	1.0	35

#	Article	IF	CITATIONS
91	Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. Journal of Lipid Research, 2007, 48, 763-767.	2.0	266
92	The RNase H Mechanism. , 2007, , 47-74.		2
93	Mechanisms of Antisense Drug Action, an Introduction. , 2007, , 3-46.		11
94	Rapid Identification of Emerging Pathogens: Coronavirus. Emerging Infectious Diseases, 2005, 11, 373-379.	2.0	94
95	Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8012-8017.	3.3	165
96	Antisense Strategies. Current Molecular Medicine, 2004, 4, 465-487.	0.6	157
97	Structural Requirements at the Catalytic Site of the Heteroduplex Substrate for Human RNase H1 Catalysis. Journal of Biological Chemistry, 2004, 279, 36317-36326.	1.6	72
98	Determination of the Role of the Human RNase H1 in the Pharmacology of DNA-like Antisense Drugs. Journal of Biological Chemistry, 2004, 279, 17181-17189.	1.6	250
99	Human RNase H1 Uses One Tryptophan and Two Lysines to Position the Enzyme at the 3′-DNA/5′-RNA Terminus of the Heteroduplex Substrate. Journal of Biological Chemistry, 2003, 278, 49860-49867.	1.6	39
100	Human RNase H1 Activity Is Regulated by a Unique Redox Switch Formed between Adjacent Cysteines. Journal of Biological Chemistry, 2003, 278, 14906-14912.	1.6	21
101	Efficient Reduction of Target RNAs by Small Interfering RNA and RNase H-dependent Antisense Agents. Journal of Biological Chemistry, 2003, 278, 7108-7118.	1.6	403
102	Human RNases H. Methods in Enzymology, 2001, 341, 430-440.	0.4	30
103	Preparation and Use of ZFY-6 Zinc Finger Ribonuclease. Methods in Enzymology, 2001, 341, 490-500.	0.4	2
104	The concept and application of antisense oligonucleotides. Diseases of the Colon and Rectum, 2001, 44, 1241-1243.	0.7	6
105	Hepatic distribution of a phosphorothioate oligodeoxynucleotide within rodents following intravenous administration212Abbreviations: HSV, herpes simplex virus; CGE, capillary gel electrophoresis; and HPLC/ES-MS, high performance liquid chromatography/electrospray-mass spectrometry.1Johnston J, ISIS Pharmaceuticals, personal communication. Cited with permission	2.0	47
106	Biochemical Pharmacology, 2001, 62, 297-306. Investigating the Structure of Human RNase H1 by Site-directed Mutagenesis. Journal of Biological Chemistry, 2001, 276, 23547-23553.	1.6	74
107	Potential roles of antisense technology in cancer chemotherapy. Oncogene, 2000, 19, 6651-6659.	2.6	74
108	Human RNase III Is a 160-kDa Protein Involved in Preribosomal RNA Processing. Journal of Biological Chemistry, 2000, 275, 36957-36965.	1.6	164

#	Article	IF	CITATIONS
109	Progress in antisense technology: The end of the beginning. Methods in Enzymology, 2000, 313, 3-45.	0.4	141
110	Evaluating the Mechanism of Action of Antiproliferative Antisense Drugs. Oligonucleotides, 2000, 10, 123-126.	4.4	15
111	Variations in mRNA Content Have No Effect on the Potency of Antisense Oligonucleotides. Oligonucleotides, 2000, 10, 453-461.	4.4	13
112	Comments on Evaluation of Antisense Drugs in the Clinic. Oligonucleotides, 2000, 10, 225-227.	4.4	4
113	Properties of Cloned and Expressed Human RNase H1. Journal of Biological Chemistry, 1999, 274, 28270-28278.	1.6	148
114	Genotypic drug discovery: what does the future hold?. Trends in Biotechnology, 1999, 17, 10-11.	4.9	0
115	Multiplexed Screening of Neutral Mass-Tagged RNA Targets against Ligand Libraries with Electrospray Ionization FTICR MS:A A Paradigm for High-Throughput Affinity Screening. Analytical Chemistry, 1999, 71, 3436-3440.	3.2	78
116	Vitravene™—Another Piece in the Mosaic. Oligonucleotides, 1998, 8, vii-viii.	4.4	84
117	Molecular Mechanisms of Antisense Drugs: RNase H. Oligonucleotides, 1998, 8, 133-134.	4.4	92
118	Antisense Therapeutics. Biotechnology and Genetic Engineering Reviews, 1998, 15, 121-158.	2.4	48
119	An Overview of Progress in Antisense Therapeutics. Oligonucleotides, 1998, 8, 115-122.	4.4	106
120	Identification and Partial Purification of Human Double Strand RNase Activity. Journal of Biological Chemistry, 1998, 273, 2532-2542.	1.6	50
121	Molecular Cloning and Expression of cDNA for Human RNase H. Oligonucleotides, 1998, 8, 53-61.	4.4	54
122	Advances in Understanding the Pharmacological Properties of Antisense Oligonucleotides. Advances in Pharmacology, 1997, 40, 1-49.	1.2	51
123	The Influence of Antisense Oligonucleotide-induced RNA Structure on Escherichia coli RNase H1 Activity. Journal of Biological Chemistry, 1997, 272, 18191-18199.	1.6	47
124	Cleavage of Single Strand RNA Adjacent to RNA-DNA Duplex Regions by Escherichia coli RNase H1. Journal of Biological Chemistry, 1997, 272, 27513-27516.	1.6	57
125	Binding Affinity and Specificity of Escherichia coli RNase H1:  Impact on the Kinetics of Catalysis of Antisense Oligonucleotideâ^'RNA Hybrids. Biochemistry, 1997, 36, 390-398.	1.2	127
126	Antisense Oligonucleotides Targeting Human Protein Kinase C-α Inhibit Phorbol Ester-Induced Reduction of Bradykinin-Evoked Calcium Mobilization in A549 Cells. Molecular Pharmacology, 1997, 51, 209-216.	1.0	22

#	Article	IF	CITATIONS
127	The Future of Sequence-Specific Transcriptional Inhibition. Cancer Investigation, 1996, 14, 89-90.	0.6	4
128	Section Review Biologicals & amp; Immunologicals: Progress in the development and patenting of antisense drug discovery technology. Expert Opinion on Therapeutic Patents, 1996, 6, 855-870.	2.4	5
129	Pharmacokinetics in mice of a [3H]-labeled phosphorothioate oligonucleotide formulated in the presence and absence of a cationic lipid. Journal of Controlled Release, 1996, 41, 121-130.	4.8	30
130	Effect of Antisense Oligonucleotides on Cytokine Release from Human Keratinocytes in anin VitroModel of Skin. Toxicology and Applied Pharmacology, 1996, 140, 85-93.	1.3	20
131	Progress in antisense therapeutics. , 1996, 16, 319-344.		45
132	New drugs and changing disease paradigms. Nature Biotechnology, 1996, 14, 238-241.	9.4	4
133	Proof of Mechanism of Antisense Drugs. Oligonucleotides, 1996, 6, 145-147.	4.4	28
134	Monthly Updates: Monthly Update Biologicals & Immunologicals: Progress in the development of antisense drugs. Expert Opinion on Investigational Drugs, 1996, 5, 1047-1052.	1.9	2
135	Delivery of Oligonucleotides and Polynucleotides. Journal of Drug Targeting, 1995, 3, 185-190.	2.1	30
136	A pharmacokinetic evaluation of 14C-labeled afovirsen sodium in patients with genital warts. Clinical Pharmacology and Therapeutics, 1994, 56, 641-646.	2.3	75
137	Progress in Evaluation of the Potential of Antisense Technology. Antisense Research and Development, 1994, 4, 145-146.	3.3	11
138	Oligonucleotide Therapeutics: A Prospectus. Antisense Research and Development, 1993, 3, 1-2.	3.3	8
139	Progress toward oligonucleotide therapeutics: pharmacodynamic properties. FASEB Journal, 1993, 7, 533-539.	0.2	118
140	Oligonucleotide therapy. Current Opinion in Biotechnology, 1992, 3, 656-661.	3.3	22
141	Leukotriene Receptors and Mechanisms of Signal Transduction. Annals of the New York Academy of Sciences, 1991, 629, 120-124.	1.8	0
142	[51] Purification of guinea pig uterus phosphoinositide-specific phospholipase C. Methods in Enzymology, 1991, 197, 526-535.	0.4	3
143	Antisense technology. Current Opinion in Biotechnology, 1991, 2, 282-287.	3.3	11
144	Solubilization of Vasopressin Receptors. Methods in Neurosciences, 1991, 5, 185-192.	0.5	0

#	Article	IF	CITATIONS
145	Desensitization of vasopressin sensitive adenylate cyclase by vasopressin and phorbol esters. Cellular Signalling, 1990, 2, 153-160.	1.7	18
146	Possible involvement of protein kinase C and cyclic AMP-dependent protein kinase in the sodium fluoride-mediated inhibition of cyclic nucleotide accumulation in smooth muscle cells. Cellular Signalling, 1990, 2, 531-536.	1.7	4
147	Chromosomal mapping of the ubiquitin gene family inSaccharomyces cerevisiaeby pulsed field gel electrophoresis. Nucleic Acids Research, 1989, 17, 3611-3612.	6.5	10
148	Homologous and heterologous desensitization mediated by vasopressin in smooth muscle cells. Cellular Signalling, 1989, 1, 241-251.	1.7	8
149	Altered actin and immunoglobulin C? expression in nitrogen mustard-resistant human Burkitt lymphoma cells. Journal of Cellular Biochemistry, 1989, 40, 407-415.	1.2	2
150	The signal transduction system of the leukotriene D4 receptor. Trends in Pharmacological Sciences, 1989, 10, 103-107.	4.0	91
151	Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Nature, 1988, 334, 268-270.	13.7	266
152	Selective purification of cardiac myosin by a high-performance salicylate affinity column. Journal of Chromatography A, 1988, 435, 185-192.	1.8	10
153	Vasopressin V1 receptors and inter-receptor regulation in vascular smooth muscle cells. Biochemical Pharmacology, 1988, 37, 2105-2108.	2.0	6
154	Altered expression and transcription of the topoisomerase II gene in nitrogen mustard-resistant human cells. Biochemical Pharmacology, 1988, 37, 4413-4416.	2.0	23
155	Phorbol 12-myristate 13-acetate inhibition of leukotriene D4-induced signal transduction was rapidly reversed by staurosporine. Biochemical and Biophysical Research Communications, 1988, 157, 521-529.	1.0	16
156	HPLC Analysis of [³ H]-Arachidonic Acid Metabolites Produced by Smooth Muscle and Endothelial Cells in Response to Leukotriene D ₄ . Journal of Liquid Chromatography and Related Technologies, 1987, 10, 2707-2719.	0.9	8
157	A vector for construction of gene libraries and the expression of heterologous genes in Saccharomyces cerevisiae. Plasmid, 1987, 17, 171-172.	0.4	4
158	Antitumor activity of bis(diphenylphosphino)alkanes, their gold(I) coordination complexes, and related compounds. Journal of Medicinal Chemistry, 1987, 30, 2181-2190.	2.9	155
159	Cellular interactions of auranofin and a related gold complex with raw 264.7 macrophages. Biochemical Pharmacology, 1987, 36, 647-654.	2.0	23
160	Differential effects of manoalide on secreted and intracellular phospholipases. Biochemical Pharmacology, 1987, 36, 733-740.	2.0	53
161	Thiol competition for Et3PAuS-albumin: a nonenzymatic mechanism for Et3PO formation. Journal of Inorganic Biochemistry, 1987, 30, 177-187.	1.5	52
162	The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. Toxicology and Applied Pharmacology, 1987, 90, 377-390.	1.3	19

#	Article	IF	CITATIONS
163	The cellular pharmacology of auranofin. Seminars in Arthritis and Rheumatism, 1987, 17, 71-80.	1.6	51
164	Cellular association, intracellular distribution, and efflux of auranofin via sequential ligand exchange reactions. Biochemical Pharmacology, 1986, 35, 923-932.	2.0	95
165	Interactions of gold coordination complexes with DNA. Biochemical Pharmacology, 1986, 35, 1427-1433.	2.0	62
166	Inter-strand cross-links and single-strand breaks produced by gold(I) and gold(III) coordination complexes. Biochemical Pharmacology, 1986, 35, 1435-1443.	2.0	21
167	Identification of the active species in deoxyribonucleic acid breakage induced by 4′-(9-acridinylamino)methanesulfon-m-anisidide and copper. Biochemical Pharmacology, 1986, 35, 1071-1078.	2.0	10
168	Formation of the thiol adducts of 4′-(9-acridinylamino)methanesulfon-m-anisidide and their binding to deoxyribonucleic acid. Biochemical Pharmacology, 1986, 35, 1655-1662.	2.0	6
169	Induction of functional β-adrenergic receptors in rat aortic smooth muscle cells by sodium butyrate. Biochemical Pharmacology, 1986, 35, 3813-3820.	2.0	16
170	Evidence for tyrosine at the ligand binding center of beta-adrenergic receptors. Biochemical Pharmacology, 1986, 35, 3821-3825.	2.0	9
171	Regulation of agonist and antagonist binding to striatal D-1 dopamine receptors: Studies using the selective D-1 antagonist [3H]SK&F R-83566. Life Sciences, 1986, 38, 2087-2096.	2.0	18
172	Vascular vasopressin receptors mediate phosphatidylinositol turnover and calcium efflux in an established smooth muscle cell line. Life Sciences, 1986, 39, 37-45.	2.0	62
173	Differential effects of aspirin and dexamethasone on phospolipase A2 and C activities and arachidonic acid release from endothelial cells in respose to bradykinin and leukotriene D4. Prostaglandins, 1986, 32, 703-708.	1.2	27
174	Effect of leukotrienes, bradykinin and calcium ionophore (A 23187) on bovine endothelial cells: Release of prostacyclin. Prostaglandins, 1986, 31, 157-166.	1.2	61
175	Correlation of the in vitro cytotoxic and in vivo antitumor activities of gold(I) coordination complexes. Journal of Medicinal Chemistry, 1986, 29, 218-223.	2.9	222
176	Application of a tissue culture microtiter test for the detection of cytotoxic agents from natural products Journal of Antibiotics, 1985, 38, 758-766.	1.0	40
177	Binding of a novel dopaminergic agonist radioligand [3H]-fenoldopam1 (SKF 82526) to D-1 receptors in rat striatum. Life Sciences, 1985, 36, 1427-1436.	2.0	35
178	Identification and characterization of leukotriene D4 receptors in adult and fetal human lung. Biochemical Pharmacology, 1985, 34, 4311-4317.	2.0	55
179	Effects of coordinated gold compounds on in vitro and in situ DNA replication. Biochemical Pharmacology, 1985, 34, 3243-3250.	2.0	21
180	Studies on the fluorescence labeling of human red blood cell membrane ghosts with 4′-(9-acridinylamino) methanesulfon-m-anisidide. Biochemical Pharmacology, 1985, 34, 3265-3273.	2.0	3

#	Article	IF	CITATIONS
181	Leukotriene C4 ([3H] - LTC4) binding to membranes isolated from a hamster smooth muscle cell line (DDTIMF2). Life Sciences, 1984, 35, 441-448.	2.0	22
182	Cloning and expression of a yeast copper metallothionein gene. Gene, 1984, 27, 23-33.	1.0	81
183	Identification of leukotriene D4 specific binding sites in the membrane preparation isolated from guinea pig lung. Prostaglandins, 1984, 28, 805-822.	1.2	22
184	Identification of specific binding sites for leukotriene C4 in human fetal lung. Prostaglandins, 1984, 27, 961-974.	1.2	39
185	Molecular mechanisms of action of auranofin and other gold complexes as related to their biologic activities. American Journal of Medicine, 1983, 75, 109-113.	0.6	57
186	Peptidoleukotrienes: Distinct receptors for leukotriene C4 and D4 in the Guinea-pig lung. Biochemical and Biophysical Research Communications, 1983, 116, 1136-1143.	1.0	103
187	Cyclophosphamide, doxorubicin, vincristine, and low-dose continuous infusion bleomycin in non-Hodgkin's lymphoma: Cancer and leukemia group B study #7804. Cancer, 1982, 49, 1346-1352.	2.0	21
188	Effects of cis-diamminedichloroplatinum (CDDP) on HeLa cell non-histone nuclear proteins. Cancer Chemotherapy and Pharmacology, 1982, 9, 36-40.	1.1	2
189	Structure-activity relationships involved in the site-specific fragmentation of linear duplex DNAs by talisomycin and bleomycin analogs. Cancer Chemotherapy and Pharmacology, 1982, 8, 57-65.	1.1	11
190	Phase II evaluation of mitomycin C (MMC) in children with refractory solid tumors using the single high-intermittent-dose schedule. Medical and Pediatric Oncology, 1981, 9, 405-407.	1.0	6
191	DNA breakage activity of the methanol extract of auromomycin. Cancer Chemotherapy and Pharmacology, 1981, 7, 41-50.	1.1	4
192	Pharmacokinetics of carminomycin in dogs and humans. Cancer Chemotherapy and Pharmacology, 1981, 6, 189-93.	1.1	3
193	Comparison of the response of synchronized Hela cells to talisomycin and bleomycin. Cancer Chemotherapy and Pharmacology, 1981, 5, 251-256.	1.1	4
194	Effects of several anthracycline antitumor antibiotics on the transcriptional activity of isolated nucleoli Journal of Antibiotics, 1980, 33, 1048-1053.	1.0	6
195	The13C NMR spectra of tallysomycin and its zinc(II) complex. Magnetic Resonance in Chemistry, 1980, 13, 270-273.	0.7	5
196	Role of intravesical mitomycin c in management of superficial bladder tumors. Urology, 1980, 16, 11-15.	0.5	76
197	Mitotane (o, p′-DDD). Cancer Treatment Reviews, 1980, 7, 49-55.	3.4	31
198	Cisplatin, bleomycin, and vinblastine combination therapy of testicular tumors: An analysis. Medical and Pediatric Oncology, 1979, 6, 195-205.	1.0	9

#	Article	IF	CITATIONS
199	Interaction of covalently closed circular PM-2 DNA and hedamycin. Biochemical and Biophysical Research Communications, 1979, 88, 237-243.	1.0	11
200	Comparison of bleomycin A2 and talisomycin a specific fragmentation of linear duplex DNA. Biochemical and Biophysical Research Communications, 1979, 91, 871-877.	1.0	17
201	Zinostatin (neocarzinostatin). Cancer Treatment Reviews, 1979, 6, 239-249.	3.4	15
202	Pediatric cancer chemotherapy: an updated review. Cancer Treatment Reviews, 1979, 6, 153-164.	3.4	8
203	Etoposide (VP-16-213). Cancer Treatment Reviews, 1979, 6, 107-124.	3.4	155
204	The effects of prior exposure to bleomycin on the incidence of pulmonary toxicities in a group of patients with disseminated testicular carcinomas. Medical and Pediatric Oncology, 1978, 5, 93-98.	1.0	15
205	Cisplatin pharmacokinetics in a patient with renal dysfunction. Medical and Pediatric Oncology, 1978, 5, 183-188.	1.0	20
206	Comparison of two radioimmunoassays and a microbiologic assay for bleomycin. Medical and Pediatric Oncology, 1978, 5, 213-218.	1.0	9
207	Maytansine. Cancer Treatment Reviews, 1978, 5, 199-207.	3.4	145
208	The transition metal binding properties of a 3RD generation bleomycin analogue, tallysomycin. Biochemical and Biophysical Research Communications, 1978, 85, 1407-1414.	1.0	13
209	Bleomycin serum pharmacokinetics as determined by a radioimmunoassay and a microbiologic assay in a patient with compromised renal function. Cancer, 1977, 39, 1430-1434.	2.0	63
210	Mitomycin C: a review. Cancer Treatment Reviews, 1976, 3, 121-139.	3.4	430
211	Low-Molecular-Weight Nuclear RNAs. Perspectives in Biology and Medicine, 1971, 15, 117-139.	0.3	47