
Joop J A Van Loon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4435481/publications.pdf Version: 2024-02-01

2.5

208

#	Article	IF	CITATIONS
1	Role of Glucosinolates in Insect-Plant Relationships and Multitrophic Interactions. Annual Review of Entomology, 2009, 54, 57-83.	11.8	771
2	An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE, 2010, 5, e14445.	2.5	532
3	Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE, 2015, 10, e0144601.	2.5	532
4	Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15, 507-514.	8.8	528
5	Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia Experimentalis Et Applicata, 2000, 97, 237-249.	1.4	416
6	Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review. Journal of Insects As Food and Feed, 2017, 3, 105-120.	3.9	373
7	Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 2009, 5, 317-324.	8.0	364
8	Plant Interactions with Multiple Insect Herbivores: From Community to Genes. Annual Review of Plant Biology, 2014, 65, 689-713.	18.7	361
9	Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae. Current Biology, 2007, 17, 1533-1544.	3.9	314
10	Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera:) Tj ETQq0 0 0	rgBT /Ove 2.0	erlock 10 Tf 272
11	Metabolic and Transcriptomic Changes Induced in Arabidopsis by the Rhizobacterium <i>Pseudomonas fluorescens</i> SS101. Plant Physiology, 2012, 160, 2173-2188.	4.8	254
12	Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21202-21207.	7.1	247
13	Attraction of Colorado Potato Beetle to Herbivore-Damaged Plants During Herbivory and After Its Termination. Journal of Chemical Ecology, 1997, 23, 1003-1023.	1.8	228
14	Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. Plant Cell, 2014, 26, 4991-5008.	6.6	224

18	Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomologia Experimentalis Et Applicata, 2003, 108, 133-148.	1.4	197
	Entomologia Experimentaris Et Applicata, 2003, 100, 135 140.		

Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Molecular Ecology, 2008, 17, 3352-3365.

Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS ONE, 2011, 6, e28991.

Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant Journal, 2016, 86, 249-267.

16

#	Article	IF	CITATIONS
19	The potential of future foods for sustainable and healthy diets. Nature Sustainability, 2018, 1, 782-789.	23.7	197
20	Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomologia Experimentalis Et Applicata, 2000, 97, 219-227.	1.4	186
21	Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chemical Senses, 2005, 30, 145-152.	2.0	181
22	Safety evaluation of neem (Azadirachta indica) derived pesticides. Journal of Ethnopharmacology, 2004, 94, 25-41.	4.1	169
23	Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host. PLoS Biology, 2012, 10, e1001435.	5.6	168
24	Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends in Plant Science, 2008, 13, 534-541.	8.8	160
25	Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. Journal of Insects As Food and Feed, 2015, 1, 131-139.	3.9	157
26	The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, 2011, 72, 1647-1654.	2.9	154
27	Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels. PLoS ONE, 2012, 7, e43607.	2.5	152
28	Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. Journal of Experimental Botany, 2009, 60, 2575-2587.	4.8	151
29	Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. Journal of Experimental Botany, 2014, 65, 2203-2217.	4.8	150
30	Genetic architecture of plant stress resistance: multiâ€ŧrait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	7.3	144
31	Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate. Journal of Chemical Ecology, 2007, 33, 1831-1844.	1.8	135
32	Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (<i>Hermetia illucens</i>). Entomologia Experimentalis Et Applicata, 2018, 166, 761-770.	1.4	135
33	Leaf surface compound fromBrassica oleracea (Cruciferae) induces oviposition byPieris brassicae (Lepidoptera: Pieridae). Chemoecology, 1992, 3, 39-44.	1.1	133
34	Identification of Olfactory Stimulants for Anopheles gambiae from Human Sweat Samples. Journal of Chemical Ecology, 2000, 26, 1367-1382.	1.8	133
35	Olfactory Coding in Antennal Neurons of the Malaria Mosquito, Anopheles gambiae. Chemical Senses, 2006, 31, 845-863.	2.0	130
36	Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria. PLoS ONE, 2010, 5, e15829.	2.5	128

#	Article	IF	CITATIONS
37	Inhibition of host-seeking response and olfactory responsiveness in Anopheles gambiae following blood feeding. Journal of Insect Physiology, 2001, 47, 303-310.	2.0	122
38	Insects to feed the world. Journal of Insects As Food and Feed, 2015, 1, 3-5.	3.9	121
39	Chemical diversity in <i>Brassica oleracea</i> affects biodiversity of insect herbivores. Ecology, 2009, 90, 1863-1877.	3.2	120
40	Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore. Journal of Chemical Ecology, 2016, 42, 1212-1225.	1.8	118
41	Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact. Journal of Cleaner Production, 2019, 222, 355-363.	9.3	116
42	Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. s Medical and Veterinary Entomology, 2006, 20, 280-287.	1.5	110
43	Nonâ€pathogenic rhizobacteria interfere with the attraction of parasitoids to aphidâ€induced plant volatiles via jasmonic acid signalling. Plant, Cell and Environment, 2013, 36, 393-404.	5.7	110
44	Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Frontiers in Plant Science, 2013, 4, 414.	3.6	110
45	Antennal sensilla of two parasitoid wasps: A comparative scanning electron microscopy study. Microscopy Research and Technique, 2004, 63, 266-273.	2.2	109
46	Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10033-10038.	7.1	109
47	A Novel Synthetic Odorant Blend for Trapping of Malaria and Other African Mosquito Species. Journal of Chemical Ecology, 2012, 38, 235-244.	1.8	109
48	Jasmonate and ethylene signaling mediate whiteflyâ€induced interference with indirect plant defense in <i>Arabidopsis thaliana</i> . New Phytologist, 2013, 197, 1291-1299.	7.3	109
49	Consideration of insects as a source of dietary protein for human consumption. Nutrition Reviews, 2017, 75, 1035-1045.	5.8	109
50	Behavioural and electrophysiological responses of the female malaria mosquito <i>Anopheles gambiae</i> (Diptera: Culicidae) to Limburger cheese volatiles. Bulletin of Entomological Research, 1997, 87, 151-159.	1.0	108
51	Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. Journal of Stored Products Research, 2004, 40, 423-438.	2.6	107
52	Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. Journal of Insect Physiology, 2001, 47, 455-464.	2.0	103
53	Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles. Entomologia Experimentalis Et Applicata, 2008, 127, 218-228.	1.4	103
54	Phytohormone Mediation of Interactions Between Herbivores and Plant Pathogens. Journal of Chemical Ecology, 2014, 40, 730-741.	1.8	99

#	Article	IF	CITATIONS
55	Dietary enrichment of edible insects with omega 3 fatty acids. Insect Science, 2020, 27, 500-509.	3.0	99
56	Insects for sustainable animal feed: inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability, 2019, 41, 23-30.	6.3	98
57	The Effect of Aliphatic Carboxylic Acids on Olfaction-Based Host-Seeking of the Malaria Mosquito Anopheles gambiae sensu stricto. Journal of Chemical Ecology, 2009, 35, 933-943.	1.8	97
58	Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE, 2018, 13, e0206097.	2.5	94
59	GC-EAC-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology, 2002, 12, 169-176.	1.1	93
60	Butterfly anti-aphrodisiac lures parasitic wasps. Nature, 2005, 433, 704-704.	27.8	93
61	Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1539-1546.	2.6	93
62	Herbivoreâ€induced plant responses in <i>Brassica oleracea</i> prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecological Entomology, 2010, 35, 240-247.	2.2	91
63	Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biology, 2012, 14, 83-90.	3.8	91
64	Transgenic plants as vital components of integrated pest management. Trends in Biotechnology, 2009, 27, 621-627.	9.3	89
65	<i>Anopheles gambiae</i> TRPA1 is a heatâ€activated channel expressed in thermosensitive sensilla of female antennae. European Journal of Neuroscience, 2009, 30, 967-974.	2.6	89
66	Herbivore-Induced Plant Volatiles Mediate In-Flight Host Discrimination by Parasitoids. Journal of Chemical Ecology, 2005, 31, 2033-2047.	1.8	88
67	Field parasitism rates of caterpillars on <i>Brassica oleracea </i> plants are reliably predicted by differential attraction of <i>Cotesia</i> parasitoids. Functional Ecology, 2009, 23, 951-962.	3.6	87
68	Chemoreception of phenolic acids and flavonoids in larvae of two species of Pieris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 166, 889-899.	1.6	86
69	Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia, 2015, 178, 1169-1180.	2.0	83
70	Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behaviour. Journal of Experimental Botany, 2014, 65, 3289-3298.	4.8	80
71	Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid. Journal of Chemical Ecology, 2012, 38, 100-115.	1.8	77
72	Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 2018, 31, 248-255.	4.1	77

#	Article	IF	CITATIONS
73	Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour. Entomologia Experimentalis Et Applicata, 2002, 104, 27-34.	1.4	75
74	Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes. Arthropod Structure and Development, 2003, 32, 319-327.	1.4	75
75	Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores. Journal of Chemical Ecology, 2007, 33, 655-668.	1.8	74
76	Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: consequences for inâ€flight host location by Cotesia parasitoids. Entomologia Experimentalis Et Applicata, 1994, 73, 175-182.	1.4	73
77	Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Medical and Veterinary Entomology, 2014, 28, 407-413.	1.5	68
78	Nutritional composition of black soldier fly larvae feeding on agroâ€industrial byâ€products. Entomologia Experimentalis Et Applicata, 2020, 168, 472-481.	1.4	68
79	Sensitivities of antennal olfactory neurons of the malaria mosquito, Anopheles gambiae, to carboxylic acids. Journal of Insect Physiology, 1999, 45, 365-373.	2.0	66
80	Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology, 2013, 94, 702-713.	3.2	66
81	Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia, 2010, 162, 393-404.	2.0	64
82	Three-dimensional organization of the glomeruli in the antennal lobe of the parasitoid wasps Cotesia glomerata and C. rubecula. Cell and Tissue Research, 2003, 312, 237-248.	2.9	63
83	Qualitative and Quantitative Differences in Herbivore-Induced Plant Volatile Blends from Tomato Plants Infested by Either Tuta absoluta or Bemisia tabaci. Journal of Chemical Ecology, 2017, 43, 53-65.	1.8	63
84	Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations. Medical and Veterinary Entomology, 2004, 18, 429-438.	1.5	62
85	Mosquito Attraction: Crucial Role of Carbon Dioxide in Formulation of a Five-Component Blend of Human-Derived Volatiles. Journal of Chemical Ecology, 2015, 41, 567-573.	1.8	62
86	Genomeâ€wide association analysis reveals distinct genetic architectures for single and combined stress responses in <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 213, 838-851.	7.3	62
87	Differences in memory dynamics between two closely related parasitoid wasp species. Animal Behaviour, 2006, 71, 1343-1350.	1.9	61
88	Folivory Affects Composition of Nectar, Floral Odor and Modifies Pollinator Behavior. Journal of Chemical Ecology, 2014, 40, 39-49.	1.8	61
89	Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Functional Ecology, 2016, 30, 431-441.	3.6	61
90	Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Functional Ecology, 2013, 27, 245-254.	3.6	60

#	Article	IF	CITATIONS
91	Plant response to eggs vs. Host marking pheromone as factors inhibiting oviposition byPieris brassicae. Journal of Chemical Ecology, 1994, 20, 1657-1665.	1.8	59
92	Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing – A mass balance approach. Journal of Cleaner Production, 2020, 271, 122488.	9.3	59
93	Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry, 2012, 77, 162-170.	2.9	58
94	Aphrodisiac Pheromones from the Wings of the Small Cabbage White and Large Cabbage White Butterflies, <i>Pieris rapae</i> and <i>Pieris brassicae</i> . ChemBioChem, 2009, 10, 1666-1677.	2.6	57
95	Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 820-825.	7.1	56
96	Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malaria Journal, 2014, 13, 160.	2.3	56
97	Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics. BioControl, 2014, 59, 707-718.	2.0	55
98	Density-Dependent Interference of Aphids with Caterpillar-Induced Defenses in Arabidopsis: Involvement of Phytohormones and Transcription Factors. Plant and Cell Physiology, 2015, 56, 98-106.	3.1	55
99	Variation in plantâ€mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. Plant Biology, 2015, 17, 474-483.	3.8	55
100	Effect of Dietary Replacement of Fishmeal by Insect Meal on Growth Performance, Blood Profiles and Economics of Growing Pigs in Kenya. Animals, 2019, 9, 705.	2.3	55
101	Effects of waste stream combinations from brewing industry on performance of Black Soldier Fly, <i>Hermetia illucens</i> (Diptera: Stratiomyidae). PeerJ, 2018, 6, e5885.	2.0	55
102	Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5205-5210.	7.1	54
103	Effects of dietary protein and carbohydrate on lifeâ€history traits and body protein and fat contents of the black soldier fly <scp><i>Hermetia illucens</i></scp> . Physiological Entomology, 2019, 44, 148-159.	1.5	54
104	Effect of prior drought and pathogen stress on <i>Arabidopsis</i> transcriptome changes to caterpillar herbivory. New Phytologist, 2016, 210, 1344-1356.	7.3	53
105	Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota. Malaria Journal, 2011, 10, 28.	2.3	52
106	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1433-1445.	1.8	51
107	Attractiveness of MM-X Traps Baited with Human or Synthetic Odor to Mosquitoes (Diptera: Culicidae) in The Gambia. Journal of Medical Entomology, 2007, 44, 970-983.	1.8	51
108	Parasitoid load affects plant fitness in a tritrophic system. Entomologia Experimentalis Et Applicata, 2008, 128, 172-183.	1.4	51

#	Article	IF	CITATIONS
109	Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea. Functional Ecology, 2011, 25, 1113-1124.	3.6	51
110	A push-pull system to reduce house entry of malaria mosquitoes. Malaria Journal, 2014, 13, 119.	2.3	51
111	Specialist deterrent chemoreceptors enable Pieris caterpillars to discriminate between chemically different deterrents. Entomologia Experimentalis Et Applicata, 1999, 91, 29-35.	1.4	50
112	Tarsal taste neuron activity and proboscis extension reflex in response to sugars and amino acids in <i>Helicoverpa armigera</i> (HA¼bner). Journal of Experimental Biology, 2010, 213, 2889-2895.	1.7	50
113	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2313-2325.	1.8	49
114	Assessing environmental impacts of genetically modified plants on non-target organisms: The relevance of in planta studies. Science of the Total Environment, 2017, 583, 123-132.	8.0	49
115	Anti-aphrodisiac Compounds of Male Butterflies Increase the Risk of Egg Parasitoid Attack by Inducing Plant Synomone Production. Journal of Chemical Ecology, 2009, 35, 1373-1381.	1.8	48
116	The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochemistry and Molecular Biology, 2009, 39, 55-61.	2.7	47
117	Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. American Journal of Clinical Nutrition, 2021, 114, 934-944.	4.7	47
118	Attractiveness of MM-X Traps Baited with Human or Synthetic Odor to Mosquitoes (Diptera: Culicidae) in The Gambia. Journal of Medical Entomology, 2007, 44, 970-983.	1.8	47
119	Insect frass and exuviae to promote plant growth and health. Trends in Plant Science, 2022, 27, 646-654.	8.8	47
120	Herbivoreâ€induced volatiles of cabbage (<i>Brassica oleracea</i>) prime defence responses in neighbouring intact plants. Plant Biology, 2011, 13, 276-284.	3.8	46
121	Neonates know better than their mothers when selecting a host plant. Oikos, 2012, 121, 1923-1934.	2.7	46
122	Degradation and excretion of the Fusarium toxin deoxynivalenol by an edible insect, the Yellow mealworm (Tenebrio molitor L.). World Mycotoxin Journal, 2017, 10, 163-169.	1.4	46
123	Black soldier fly reared on pig manure: Bioconversion efficiencies, nutrients in the residual material, greenhouse gas and ammonia emissions. Waste Management, 2021, 126, 674-683.	7.4	46
124	Prey-mediated effects of glucosinolates on aphid predators. Ecological Entomology, 2011, 36, 377-388.	2.2	45
125	Early herbivore alert matters: plantâ€mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecology Letters, 2015, 18, 927-936.	6.4	45
126	Fitness consequences of indirect plant defence in the annual weed, <i><scp>S</scp>inapis arvensis</i> . Functional Ecology, 2015, 29, 1019-1025.	3.6	45

#	Article	IF	CITATIONS
127	Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies. Entomologia Experimentalis Et Applicata, 2008, 128, 109-116.	1.4	44
128	Photoreceptor spectral sensitivity of the compound eyes of black soldier fly (Hermetia illucens) informing the design of LED-based illumination to enhance indoor reproduction. Journal of Insect Physiology, 2016, 95, 133-139.	2.0	44
129	Smallholder farmers' knowledge and willingness to pay for insect-based feeds in Kenya. PLoS ONE, 2020, 15, e0230552.	2.5	44
130	Chemoreception of oviposition inhibiting terpenoids in the diamondback moth Plutella xylostella. Entomologia Experimentalis Et Applicata, 1998, 87, 143-155.	1.4	43
131	Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Management Science, 2013, 69, 302-311.	3.4	43
132	Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. Infection, Genetics and Evolution, 2013, 18, 87-93.	2.3	41
133	The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoid. Entomologia Experimentalis Et Applicata, 2008, 128, 99-108.	1.4	40
134	Disruption of plant carotenoid biosynthesis through virusâ€induced gene silencing affects oviposition behaviour of the butterfly <i>Pieris rapae</i> . New Phytologist, 2010, 186, 733-745.	7.3	40
135	Field Evaluation of a Push-Pull System to Reduce Malaria Transmission. PLoS ONE, 2015, 10, e0123415.	2.5	40
136	Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry, 2015, 118, 139-148.	2.9	40
137	Chemosensory basis of feeding and oviposition behaviour in herbivorous insects: a glance at the periphery. Entomologia Experimentalis Et Applicata, 1996, 80, 7-13.	1.4	39
138	Attraction of Three Mirid Predators to Tomato Infested by Both the Tomato Leaf Mining Moth Tuta absoluta and the Whitefly Bemisia tabaci. Journal of Chemical Ecology, 2018, 44, 29-39.	1.8	37
139	Isolation, Identification, and Synthesis of Miriamides, New Hostmarkers from Eggs of Pieris brassicae. Journal of Natural Products, 1994, 57, 90-99.	3.0	36
140	Plantâ€mediated effects of butterfly egg deposition on subsequent caterpillar and pupal development, across different species of wild Brassicaceae. Ecological Entomology, 2015, 40, 444-450.	2.2	36
141	Performance of the Black Soldier Fly (Diptera: Stratiomyidae) on Vegetable Residue-Based Diets Formulated Based on Protein and Carbohydrate Contents. Journal of Economic Entomology, 2018, 111, 2676-2683.	1.8	36
142	Insights in the Global Genetics and Gut Microbiome of Black Soldier Fly, Hermetia illucens: Implications for Animal Feed Safety Control. Frontiers in Microbiology, 2020, 11, 1538.	3.5	34
143	Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, <i>Nasonovia ribisnigri</i> , on resistant and susceptible <i>Lactuca sativa</i> near-isogenic lines. Bulletin of Entomological Research, 2013, 103, 511-521.	1.0	33
144	Virus interferes with host-seeking behaviour of mosquito. Journal of Experimental Biology, 2017, 220, 3598-3603.	1.7	33

#	Article	IF	CITATIONS
145	Structure and electrophysiological responses of gustatory organs on the ovipositor of the parasitoid Leptopilina heterotoma. Arthropod Structure and Development, 2007, 36, 271-276.	1.4	32
146	Variation in herbivoreâ€induced plant volatiles corresponds with spatial heterogeneity in the level of parasitoid competition and parasitoid exposure to hyperparasitism. Functional Ecology, 2013, 27, 1107-1116.	3.6	32
147	INHERITANCE OF GUSTATORY SENSITIVITY IN F1 PROGENY OF CROSSES BETWEEN <i>YPONOMEUTA CAGNAGELLUS</i> AND <i>Y. MALINELLUS</i> (LEPIDOPTERA). Entomologia Experimentalis Et Applicata, 1980, 28, 199-203.	1.4	31
148	Caught between Parasitoids and Predators – Survival of a Specialist Herbivore on Leaves and Flowers of Mustard Plants. Journal of Chemical Ecology, 2014, 40, 621-631.	1.8	31
149	Plantâ€mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage. Plant Biology, 2016, 18, 981-991.	3.8	31
150	Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Plant, Cell and Environment, 2020, 43, 775-786.	5.7	31
151	Genetic analysis of larval host-plant preference in two sibling species of Helicoverpa. Entomologia Experimentalis Et Applicata, 2006, 118, 221-228.	1.4	30
152	Behavioural responses of Anopheles gambiae sensu stricto to components of human breath, sweat and urine depend on mixture composition and concentration. Medical and Veterinary Entomology, 2011, 25, 247-255.	1.5	30
153	Orientation behaviour of the predatory hemipteran Perillus bioculatus to plant and prey odours. Entomologia Experimentalis Et Applicata, 2000, 96, 51-58.	1.4	29
154	Chemosensory basis of behavioural plasticity in response to deterrent plant chemicals in the larva of the Small Cabbage White butterfly Pieris rapae. Journal of Insect Physiology, 2009, 55, 788-792.	2.0	29
155	The Biosynthesis of Hexahydrofarnesylacetone in the Butterfly Pieris brassicae. Journal of Chemical Ecology, 2011, 37, 360-363.	1.8	29
156	Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. Journal of Experimental Botany, 2014, 65, 4821-4831.	4.8	29
157	To be in time: egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Oecologia, 2015, 177, 477-486.	2.0	29
158	Aflatoxin B1 Conversion by Black Soldier Fly (Hermetia illucens) Larval Enzyme Extracts. Toxins, 2019, 11, 532.	3.4	29
159	Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genetics, 2021, 17, e1009527.	3.5	29
160	Contrasting effects of heat pulses on different trophic levels, an experiment with a herbivore-parasitoid model system. PLoS ONE, 2017, 12, e0176704.	2.5	28
161	Use of visual and olfactory cues of flowers of two brassicaceous species by insect pollinators. Ecological Entomology, 2020, 45, 45-55.	2.2	28
162	Plant feeding by Nesidiocoris tenuis: Quantifying its behavioral and mechanical components. Biological Control, 2021, 152, 104402.	3.0	28

#	Article	IF	CITATIONS
163	ldentification of candidate volatiles that affect the behavioural response of the malaria mosquito <i>Anopheles gambiae sensu stricto</i> to an active kairomone blend: laboratory and semiâ€field assays. Physiological Entomology, 2012, 37, 60-71.	1.5	27
164	Eave Screening and Push-Pull Tactics to Reduce House Entry by Vectors of Malaria. American Journal of Tropical Medicine and Hygiene, 2016, 94, 868-878.	1.4	27
165	Behavioural and sensory responses to drimane antifeedants in <i>Pieris brassicae</i> larvae. Entomologia Experimentalis Et Applicata, 1996, 79, 195-202.	1.4	26
166	Insects Can Count: Sensory Basis of Host Discrimination in Parasitoid Wasps Revealed. PLoS ONE, 2015, 10, e0138045.	2.5	26
167	Efficacy of plant extracts against the cowpea beetle,Callosobruchus maculatus. International Journal of Pest Management, 2004, 50, 251-258.	1.8	25
168	ECOLOGY: Enhanced: Ecogenomics Benefits Community Ecology. Science, 2004, 305, 618-619.	12.6	25
169	Electroantennogram responses to plant volatiles in two species of <i>Pieris</i> butterflies. Entomologia Experimentalis Et Applicata, 1992, 62, 253-260.	1.4	24
170	Effects of soil organisms on aboveground multitrophic interactions are consistent between plant genotypes mediating the interaction. Entomologia Experimentalis Et Applicata, 2011, 139, 197-206.	1.4	24
171	Evaluation of low density polyethylene and nylon for delivery of synthetic mosquito attractants. Parasites and Vectors, 2012, 5, 202.	2.5	24
172	Laboratory Populations as a Resource for Understanding the Relationship Between Genotypes and Phenotypes. Advances in Insect Physiology, 2010, , 1-37.	2.7	23
173	Natural variation in life history strategy of <i>Arabidopsis thaliana</i> determines stress responses to drought and insects of different feeding guilds. Molecular Ecology, 2017, 26, 2959-2977.	3.9	23
174	Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage–insect interactions through plant–soil feedback. New Phytologist, 2021, 232, 2475-2490.	7.3	23
175	Endure and call for help: strategies of black mustard plants to deal with a specialized caterpillar. Functional Ecology, 2017, 31, 325-333.	3.6	22
176	Edible insects unlikely to contribute to transmission of coronavirus SARS-CoV-2. Journal of Insects As Food and Feed, 2020, 6, 333-339.	3.9	22
177	Chemical polymorphism of the cuticular lipids of the cabbage white Pieris rapae. Journal of Chemical Ecology, 2002, 28, 2627-2631.	1.8	21
178	Silencing Defense Pathways in Arabidopsis by Heterologous Gene Sequences from Brassica oleracea Enhances the Performance of a Specialist and a Generalist Herbivorous Insect. Journal of Chemical Ecology, 2011, 37, 818-829.	1.8	21
179	Enhancing Attraction of African Malaria Vectors to a Synthetic Odor Blend. Journal of Chemical Ecology, 2016, 42, 508-516.	1.8	21
180	Use of semiochemicals for surveillance and control of hematophagous insects. Chemoecology, 2020, 30, 277-286.	1.1	21

#	Article	IF	CITATIONS
181	Feeding behaviour and performance of different populations of the black currantâ€lettuce aphid, <i><scp>N</scp>asonovia ribisnigri</i> , on resistant and susceptible lettuce. Entomologia Experimentalis Et Applicata, 2013, 148, 130-141.	1.4	21
182	Different bioassays for investigating orientation responses of the banana weevil, Cosmopolites sordidus , show additive effects of host plant volatiles and a synthetic male-produced aggregation pheromone. Entomologia Experimentalis Et Applicata, 2003, 106, 169-175.	1.4	20
183	Side-effects of cowpea treatment with botanical insecticides on two parasitoids of Callosobruchus maculatus. Entomologia Experimentalis Et Applicata, 2003, 108, 43-51.	1.4	20
184	Hybridization between Helicoverpa armigera and Helicoverpa assulta (Lepidoptera: Noctuidae): development and morphological characterization of F1 hybrids. Bulletin of Entomological Research, 2005, 95, 409-416.	1.0	20
185	Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 791-799.	1.6	20
186	Insect oviposition behavior affects the evolution of adaptation to Bt crops: consequences for refuge policies. Evolutionary Ecology, 2010, 24, 1017-1030.	1.2	20
187	Role of Large Cabbage White butterfly male-derived compounds in elicitation of direct and indirect egg-killing defenses in the black mustard. Frontiers in Plant Science, 2015, 6, 794.	3.6	20
188	Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC Plant Biology, 2015, 15, 165.	3.6	20
189	Higher plasticity in feeding preference of a generalist than a specialist: experiments with two closely related Helicoverpa species. Scientific Reports, 2017, 7, 17876.	3.3	20
190	Predicting the impact of outdoor vector control interventions on malaria transmission intensity from semi-field studies. Parasites and Vectors, 2021, 14, 64.	2.5	20
191	Antifeedant and toxic effects of drimanes on Colorado potato beetle larvae. Entomologia Experimentalis Et Applicata, 1996, 79, 69-76.	1.4	19
192	Feeding behaviour and reproductive biology of Colorado potato beetle adults fed transgenic potatoes expressing the Bacillus thuringiensis Cry3B endotoxin. Entomologia Experimentalis Et Applicata, 2000, 95, 31-37.	1.4	19
193	Effects of blood-feeding on olfactory sensitivity of the malaria mosquito Anopheles gambiae: Application of mixed linear models to account for repeated measurements. Journal of Insect Physiology, 2013, 59, 1111-1118.	2.0	19
194	Response of a Predatory ant to Volatiles Emitted by Aphid- and Caterpillar-Infested Cucumber and Potato Plants. Journal of Chemical Ecology, 2017, 43, 1007-1022.	1.8	19
195	Insects for peace. Current Opinion in Insect Science, 2020, 40, 85-93.	4.4	19
196	Chemical Mediation of Oviposition by Anopheles Mosquitoes: a Push-Pull System Driven by Volatiles Associated with Larval Stages. Journal of Chemical Ecology, 2020, 46, 397-409.	1.8	19
197	Bidirectional plantâ€mediated interactions between rhizobacteria and shootâ€feeding herbivorous insects: a community ecology perspective. Ecological Entomology, 2021, 46, 1-10.	2.2	19
198	Title is missing!. Journal of Chemical Ecology, 1998, 24, 1433-1446.	1.8	18

#	Article	IF	CITATIONS
199	Nutritional ecology of insect-plant interactions: persistent handicaps and the need for innovative approaches. Oikos, 2005, 108, 194-201.	2.7	18
200	Antibiosis resistance against larval cabbage root fly, Delia radicum, in wild Brassica-species. Euphytica, 2016, 211, 139-155.	1.2	18
201	Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore. FEMS Microbiology Ecology, 2017, 93, .	2.7	18
202	Towards a coordination of European activities to diagnose and manage insect diseases in production facilities. Journal of Insects As Food and Feed, 2018, 4, 157-166.	3.9	18
203	Evaluating putative repellent â€~push' and attractive â€~pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space. Parasites and Vectors, 2021, 14, 42.	2.5	18
204	Tolerance of Brassica nigra to Pieris brassicae herbivory. Botany, 2008, 86, 641-648.	1.0	17
205	Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea. Journal of Experimental Botany, 2009, 60, 2589-2599.	4.8	17
206	Understanding the Long-Lasting Attraction of Malaria Mosquitoes to Odor Baits. PLoS ONE, 2015, 10, e0121533.	2.5	17
207	Evolution of gustatory sensitivity in Yponomeuta caterpillars: sensitivity to the stereo-isomers dulcitol and sorbitol is localised in a single sensory cell. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1999, 184, 119-126.	1.6	16
208	Behavioural observations of Pieris brassicae larvae indicate multiple mechanisms of action of analogous drimane antifeedants. Entomologia Experimentalis Et Applicata, 2000, 95, 217-227.	1.4	16
209	Chemical Ecology of Phytohormones: How Plants Integrate Responses to Complex and Dynamic Environments. Journal of Chemical Ecology, 2014, 40, 653-656.	1.8	15
210	Cost-Effectiveness of Black Soldier Fly Larvae Meal as Substitute of Fishmeal in Diets for Layer Chicks and Growers. Sustainability, 2021, 13, 6074.	3.2	15
211	The role of an epipharyngeal sensillum in the perception of feeding deterrents by Leptinotarsa decemlineata larvae. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 183, 255-264.	1.6	14
212	Host preference of Callosobruchus maculatus: a comparison of life history characteristics for three strains of beetles on two varieties of cowpea. Journal of Applied Entomology, 2004, 128, 390-396.	1.8	14
213	Increasing insight into induced plant defense mechanisms using elicitors and inhibitors. Plant Signaling and Behavior, 2010, 5, 271-274.	2.4	14
214	Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia, 2017, 183, 107-120.	2.0	14
215	Black soldier fly larvae show a stronger preference for manure than for a massâ€rearing diet. Journal of Applied Entomology, 2020, 144, 560-565.	1.8	14
216	The effect of host acceptability on oviposition and egg accumulation by the small white butterfly,Pieris rapae. Physiological Entomology, 2001, 26, 149-157.	1.5	13

#	Article	IF	CITATIONS
217	Biodiversity analyses for risk assessment of genetically modified potato. Agriculture, Ecosystems and Environment, 2017, 249, 196-205.	5.3	13
218	Effects of a genetically modified potato on a non-target aphid are outweighed by cultivar differences. Journal of Pest Science, 2017, 90, 855-864.	3.7	13
219	Evaluation of textile substrates for dispensing synthetic attractants for malaria mosquitoes. Parasites and Vectors, 2014, 7, 376.	2.5	12
220	Relative contributions of egg-associated and substrate-associated microorganisms to black soldier fly larval performance and microbiota. FEMS Microbiology Ecology, 2021, 97, .	2.7	12
221	Effects of azadirachtin after systemic uptake into <i>Brassica oleracea</i> on larvae of <i>Pieris brassicae</i> . Entomologia Experimentalis Et Applicata, 1993, 66, 39-45.	1.4	11
222	Structure-Activity Relationship of Isolated Avenanthramide Alkaloids and Synthesized Related Compounds as Oviposition Deterrents for Pieris brassicae. Journal of Natural Products, 1994, 57, 1145-1151.	3.0	11
223	Upgrading ammonia-nitrogen from manure into body proteins in black soldier fly larvae. Resources, Conservation and Recycling, 2022, 182, 106343.	10.8	11
224	Gravimetric <i>vs.</i> respirometric determination of metabolic efficiency in caterpillars of <i>Pieris brassicae</i> . Entomologia Experimentalis Et Applicata, 1993, 67, 135-142.	1.4	10
225	Field trials with plant products to protect stored cowpea against insect damage. International Journal of Pest Management, 2004, 50, 1-9.	1.8	10
226	Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid. Oecologia, 2017, 185, 699-712.	2.0	10
227	Black Soldier Fly Larvae Influence Internal and Substrate Bacterial Community Composition Depending on Substrate Type and Larval Density. Applied and Environmental Microbiology, 2022, 88, e0008422.	3.1	10
228	The effect of plant development on thrips resistance in Capsicum. Arthropod-Plant Interactions, 2019, 13, 11-18.	1.1	9
229	Effects of low and high red to far-red light ratio on tomato plant morphology and performance of four arthropod herbivores. Scientia Horticulturae, 2022, 292, 110645.	3.6	9
230	Effect of Sequential Induction by Mamestra brassicae L. and Tetranychus urticae Koch on Lima Bean Plant Indirect Defense. Journal of Chemical Ecology, 2014, 40, 977-985.	1.8	8
231	INHERITANCE OF ELECTROPHYSIOLOGICAL RESPONSES TO LEAF SAPS OF HOST―AND NONHOST PLANTS IN TWO <i>Helicoverpa</i> SPECIES AND THEIR HYBRIDS. Archives of Insect Biochemistry and Physiology, 2014, 86, 19-32.	1.5	8
232	Reprotoxic effects of the systemic insecticide fipronil on the butterfly <i>Pieris brassicae</i> . Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192665.	2.6	8
233	Does drought stress modify the effects of plantâ€growth promoting rhizobacteria on an aboveground chewing herbivore?. Insect Science, 2017, 24, 1034-1044.	3.0	7
234	Differential effects of the rhizobacterium Pseudomonas simiae on above―and belowground chewing insect herbivores. Journal of Applied Entomology, 2021, 145, 250-260.	1.8	7

#	Article	IF	CITATIONS
235	Sensory Ecology of Arthropods Utilizing Plant Infochemicals. , 2001, , 253-270.		7
236	Trans-generational desensitization and within-generational resensitization of a sucrose-best neuron in the polyphagous herbivore Helicoverpa armigera (Lepidoptera: Noctuidae). Scientific Reports, 2016, 6, 39358.	3.3	6
237	A flowâ€ŧhrough respirometer for leaf chewing insects. Entomologia Experimentalis Et Applicata, 1988, 49, 265-276.	1.4	5
238	Feeding behavior and performance of <i>Nasonovia ribisnigri</i> on grafts, detached leaves, and leaf disks of resistant and susceptible lettuce. Entomologia Experimentalis Et Applicata, 2016, 159, 102-111.	1.4	5
239	Inoculation of susceptible and resistant potato plants with the late blight pathogen <i><scp>P</scp>hytophthora infestans</i> : effects on an aphid and its parasitoid. Entomologia Experimentalis Et Applicata, 2017, 163, 305-314.	1.4	5
240	The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars. Arthropod-Plant Interactions, 2017, 11, 785-796.	1.1	5
241	Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism. Theoretical and Applied Genetics, 2021, 134, 1557-1573.	3.6	5
242	Rearing history affects behaviour and performance of two virulent <i><scp>N</scp>asonovia ribisnigri</i> populations on two lettuce cultivars. Entomologia Experimentalis Et Applicata, 2014, 151, 97-105.	1.4	4
243	Equivalence analysis to support environmental safety assessment: Using nontarget organism count data from field trials with cisgenically modified potato. Ecology and Evolution, 2019, 9, 2863-2882.	1.9	4
244	Leaf-chewing herbivores affect preference and performance of a specialist root herbivore. Oecologia, 2022, 199, 243-255.	2.0	4
245	The effect of a thrips resistance QTL in different Capsicum backgrounds. Euphytica, 2020, 216, 1.	1.2	3
246	Chemosensory basis of feeding and oviposition behaviour in herbivorous insects: a glance at the periphery. , 1996, , 7-13.		3
247	Specialist deterrent chemoreceptors enable Pieris caterpillars to discriminate between chemically different deterrents. , 1999, , 29-35.		3
248	Expression in Arabidopsis of a Strawberry Linalool Synthase Gene Under the Control of the Inducible Potato PI2 Promoter. Agricultural Sciences in China, 2008, 7, 521-534.	0.6	2
249	Development and use of a monoclonal antibody to detect semiâ€digested proteins of the English grain aphid, <i>Sitobion avenae</i> , in the guts of ladybird beetle predators. Entomologia Experimentalis Et Applicata, 2009, 133, 193-198.	1.4	2
250	Resistance to a new biotype of the lettuce aphid Nasonovia ribisnigri in Lactuca virosa accession IVT280. Euphytica, 2013, 193, 265-275.	1.2	2
251	Plant quantity affects development and reproduction of a gregarious butterfly more than plant quality. Entomologia Experimentalis Et Applicata, 0, , .	1.4	2
252	Effects of extreme temperature events on the parasitism performance of <i>Diadegma semiclausum</i> , an endoparasitoid of <i>Plutella xylostella</i> . Entomologia Experimentalis Et Applicata, 2022, 170, 656-665.	1.4	2

#	Article	IF	CITATIONS
253	Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. New Phytologist, 2022, 235, 2378-2392.	7.3	2
254	Habituation to a Deterrent Plant Alkaloid Develops Faster in the Specialist Herbivore Helicoverpa assulta Than in Its Generalist Congener Helicoverpa armigera and Coincides with Taste Neuron Desensitisation. Insects, 2022, 13, 21.	2.2	0