Keith W Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The epithelial splicing regulator <i>ESRP2</i> is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor. Molecular Oncology, 2022, 16, 630-647.	4.6	3
2	Epigenetic deregulation of GATA3 in neuroblastoma is associated with increased GATA3 protein expression and with poor outcomes. Scientific Reports, 2019, 9, 18934.	3.3	17
3	Genomeâ€wide DNA methylation analysis identifies <i>MEGF10</i> as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma. Molecular Carcinogenesis, 2017, 56, 1290-1301.	2.7	23
4	Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells. Molecular Oncology, 2015, 9, 617-627.	4.6	49
5	MYCN is recruited to the <i>RASSF1A</i> promoter but is not critical for DNA hypermethylation in neuroblastoma. Molecular Carcinogenesis, 2014, 53, 413-420.	2.7	6
6	Insulin-like growth factor binding protein-3 (IGFBP-3) plays a role in the anti-tumorigenic effects of 5-Aza-2′-deoxycytidine (AZA) in breast cancer cells. Experimental Cell Research, 2013, 319, 2282-2295.	2.6	16
7	Control of epigenetic states by WT1 via regulation of de novo DNA methyltransferase 3A. Human Molecular Genetics, 2013, 22, 74-83.	2.9	36
8	Characterization of 17.94, a novel anaplastic Wilms' tumor cell line. Cancer Genetics, 2012, 205, 319-326.	0.4	16
9	DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Biochemical Pharmacology, 2012, 83, 858-865.	4.4	49
10	Frequent Long-Range Epigenetic Silencing of Protocadherin Gene Clusters on Chromosome 5q31 in Wilms' Tumor. PLoS Genetics, 2009, 5, e1000745.	3.5	129
11	Perilobar Nephrogenic Rests Are Nonobligate Molecular Genetic Precursor Lesions of Insulin-Like Growth Factor-II-Associated Wilms Tumors. Clinical Cancer Research, 2008, 14, 7635-7644.	7.0	30
12	Frequency and Timing of Loss of Imprinting at 11p13 and 11p15 in Wilms' Tumor Development. Molecular Cancer Research, 2008, 6, 1114-1123.	3.4	20
13	A CTCF-binding silencer regulates the imprinted genes AWT1 and WT1-AS and exhibits sequential epigenetic defects during Wilms' tumourigenesis. Human Molecular Genetics, 2007, 16, 343-354.	2.9	36
14	Alternately spliced <i>WT1</i> antisense transcripts interact with <i>WT1</i> sense RNA and show epigenetic and splicing defects in cancer. Rna, 2007, 13, 2287-2299.	3.5	71
15	Hypomethylation and Aberrant Expression of the Glioma Pathogenesis-Related 1 Gene in Wilms Tumors. Neoplasia, 2007, 9, 970-978.	5.3	40
16	The parathyroid hormone-responsive B1 gene is interrupted by a t(1;7)(q42;p15) breakpoint associated with Wilms' tumour. Oncogene, 2003, 22, 1371-1380.	5.9	28
17	Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours. Human Molecular Genetics, 2003, 13, 405-415.	2.9	69
18	Low frequency of genetic lesions in Wilms tumors by representational difference analysis. Cancer Genetics and Cytogenetics, 2001, 127, 155-160.	1.0	3

Keith W Brown

#	Article	IF	CITATIONS
19	The molecular biology of Wilms' tumour. Expert Reviews in Molecular Medicine, 2001, 3, 1-16.	3.9	24
20	Transactivation of the WT1 antisense promoter is unique to the WT1[+/â^'] isoform. FEBS Letters, 1999, 456, 131-136.	2.8	8
21	Loss of WT1 function leads to ectopic myogenesis in Wilms' tumour. Nature Genetics, 1998, 18, 15-17.	21.4	69
22	Antisense WT1 transcription parallels sense mRNA and protein expression in fetal kidney and can elevate protein levelsin vitro. , 1998, 185, 352-359.		45
23	Microdissecting the Genetic Events in Nephrogenic Rests and Wilms' Tumor Development. American Journal of Pathology, 1998, 153, 991-1000.	3.8	78
24	Localization of a novel t(1;7) translocation associated with Wilms' tumor predisposition and skeletal abnormalities. , 1996, 17, 151-155.		19
25	Imprinting mutations in the Beckwith—Wiedemann syndrome suggested by an altered imprinting pattern in the IGF2–H19 domain. Human Molecular Genetics, 1995, 4, 2379-2385.	2.9	235
26	SSCP and incorporation of 7-deaza-2′ddGTP into PCR products. Trends in Genetics, 1994, 10, 225.	6.7	0
27	Germline and somatic abnormalities of chromosome 7 in Wilms' tumor. Cancer Genetics and Cytogenetics, 1994, 77, 93-98.	1.0	54
28	Autoregulation of the human WT1 gene promoter. FEBS Letters, 1994, 349, 75-78.	2.8	38
29	Somatic Allelic Loss at the DCC, APC, nm23-H1 and P53 Tumor Suppressor Gene Loci in Human Prostatic Carcinoma. Journal of Urology, 1994, 151, 1073-1077.	0.4	91
30	Low frequency of mutations in theWT1 coding region in Wilms' tumor. Genes Chromosomes and Cancer, 1993, 8, 74-79.	2.8	42
31	Alteration of the extracellular matrix of cultured human keratinocytes by transformation and during differentiation. International Journal of Cancer, 1985, 35, 799-807.	5.1	32
32	Extracellular matrix components produced by SV40-transformed human epidermal keratinocytes. International Journal of Cancer, 1984, 33, 257-263.	5.1	29
33	Radioimmunoassay of brain-type creatine kinase-BB isoenzyme in human tissues and in serum of patients with neurological disorders. Journal of the Neurological Sciences, 1980, 47, 241-254.	0.6	70

Purification, radioimmuno assay, and distribution of human brain 14-3-2 protein (nervous-system) Tj ETQq0 0 0 rg $B_{2.4}^{T}$ (Overlock 10 Tf 50