Reetta Satokari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. American Journal of Clinical Nutrition, 2022, 115, 407-421.	4.7	29
2	Novel strain of <i>Pseudoruminococcus massiliensis</i> possesses traits important in gut adaptation and host-microbe interactions. Gut Microbes, 2022, 14, 2013761.	9.8	0
3	Multiple Proteins of Lacticaseibacillus rhamnosus GG Are Involved in the Protection of Keratinocytes From the Toxic Effects of Staphylococcus aureus. Frontiers in Microbiology, 2022, 13, .	3.5	1
4	Genome-wide siRNA screening reveals several host receptors for the binding of human gut commensal Bifidobacterium bifidum. Npj Biofilms and Microbiomes, 2022, 8, .	6.4	1
5	A standardised model for stool banking for faecal microbiota transplantation: a consensus report from a multidisciplinary UEG working group. United European Gastroenterology Journal, 2021, 9, 229-247.	3.8	66
6	Author's Reply: Fecal Microbiota Transplantation for Chronic Pouchitis: Promising Novel Therapeutic or Lost Cause?. Inflammatory Bowel Diseases, 2021, 27, e79-e80.	1.9	0
7	Fecal Microbiota Transplantation in Chronic Pouchitis: A Randomized, Parallel, Double-Blinded Clinical Trial. Inflammatory Bowel Diseases, 2021, 27, 1766-1772.	1.9	21
8	SARS-CoV-2 vaccines and donor recruitment for FMT. The Lancet Gastroenterology and Hepatology, 2021, 6, 264-266.	8.1	5
9	Mechanical bowel preparation and oral antibiotics versus mechanical bowel preparation only prior rectal surgery (MOBILE2): a multicentre, double-blinded, randomised controlled trial—study protocol. BMJ Open, 2021, 11, e051269.	1.9	5
10	The use of Faecal Microbiota Transplantation (FMT) in Europe: A Europe-wide survey. Lancet Regional Health - Europe, The, 2021, 9, 100181.	5.6	43
11	Letter: faecal microbiota transplantation for irritable bowel syndrome. Authors' reply. Alimentary Pharmacology and Therapeutics, 2020, 52, 557-558.	3.7	1
12	Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Frontiers in Microbiology, 2020, 11, 575455.	3.5	110
13	Cultivation and Genomics Prove Long-Term Colonization of Donor's Bifidobacteria in Recurrent Clostridioides difficile Patients Treated With Fecal Microbiota Transplantation. Frontiers in Microbiology, 2020, 11, 1663.	3.5	7
14	Colonic Mucosal Microbiota and Association of Bacterial Taxa with the Expression of Host Antimicrobial Peptides in Pediatric Ulcerative Colitis. International Journal of Molecular Sciences, 2020, 21, 6044.	4.1	20
15	Letter: faecal microbiota transplantation for irritable bowel syndrome—room for improvement. Authors' reply. Alimentary Pharmacology and Therapeutics, 2020, 52, 925-926.	3.7	5
16	High Intake of Sugar and the Balance between Pro- and Anti-Inflammatory Gut Bacteria. Nutrients, 2020, 12, 1348.	4.1	73
17	Faecal banking at –20 °C facilitates faecal microbiota transplantation for recurrent <i>Clostridioides difficile</i> infection in clinical practice. Infectious Diseases, 2020, 52, 662-665.	2.8	1
18	Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut, 2020, 69, 1555-1563.	12.1	110

REETTA SATOKARI

#	Article	IF	CITATIONS
19	Randomised clinical trial: faecal microbiota transplantation versus autologous placebo administered via colonoscopy in irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 2020, 51, 1321-1331.	3.7	69
20	Isolation of Anti-Inflammatory and Epithelium Reinforcing Bacteroides and Parabacteroides Spp. from A Healthy Fecal Donor. Nutrients, 2020, 12, 935.	4.1	97
21	Universal membrane-labeling combined with expression of Katushka far-red fluorescent protein enables non-invasive dynamic and longitudinal quantitative 3D dual-color fluorescent imaging of multiple bacterial strains in mouse intestine. BMC Microbiology, 2019, 19, 167.	3.3	5
22	Growth Mode and Carbon Source Impact the Surfaceome Dynamics of Lactobacillus rhamnosus GG. Frontiers in Microbiology, 2019, 10, 1272.	3.5	28
23	Minor Effect of Antibiotic Pre-treatment on the Engraftment of Donor Microbiota in Fecal Transplantation in Mice. Frontiers in Microbiology, 2019, 10, 2685.	3.5	41
24	Modulation of Gut Microbiota for Health by Current and Next-Generation Probiotics. Nutrients, 2019, 11, 1921.	4.1	47
25	International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut, 2019, 68, 2111-2121.	12.1	290
26	Understanding mode of action can drive the translational pipeline towards more reliable health benefits for probiotics. Current Opinion in Biotechnology, 2019, 56, 55-60.	6.6	55
27	Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nature Communications, 2018, 9, 3891.	12.8	313
28	The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients, 2018, 10, 988.	4.1	380
29	The composition of the perinatal intestinal microbiota in cattle. Scientific Reports, 2018, 8, 10437.	3.3	138
30	European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 2017, 66, 569-580.	12.1	793
31	Feasibility of Metatranscriptome Analysis from Infant Gut Microbiota: Adaptation to Solid Foods Results in Increased Activity of Firmicutes at Six Months. International Journal of Microbiology, 2017, 2017, 1-9.	2.3	11
32	Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE, 2017, 12, e0173004.	2.5	340
33	Faecal microbiota transplantation in patients with <i>Clostridium difficile</i> and significant comorbidities as well as in patients with new indications: A case series. World Journal of Gastroenterology, 2017, 23, 7174-7184.	3.3	37
34	Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp Frontiers in Microbiology, 2016, 7, 1706.	3.5	214
35	Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism. Applied and Environmental Microbiology, 2016, 82, 5756-5762.	3.1	93
36	Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection. BMC Medicine, 2016, 14, 155.	5.5	86

Reetta Satokari

#	Article	IF	CITATIONS
37	Reduction of Antibiotic Resistance Genes in Intestinal Microbiota of Patients With Recurrent <i>Clostridium difficile</i> Infection After Fecal Microbiota Transplantation. Clinical Infectious Diseases, 2016, 63, 710-711.	5.8	38
38	Isolation and whole genome sequencing of a Ruminococcus-like bacterium, associated with irritable bowel syndrome. Anaerobe, 2016, 39, 60-67.	2.1	24
39	Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME Journal, 2016, 10, 1002-1014.	9.8	104
40	Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili. PLoS ONE, 2016, 11, e0151824.	2.5	62
41	Genome Sequence of the Butyrate <i>-</i> Producing Anaerobic Bacterium Anaerostipes hadrus PEL 85. Genome Announcements, 2015, 3, .	0.8	38
42	Contentious host–microbiota relationship in inflammatory bowel disease – can foes become friends again?. Scandinavian Journal of Gastroenterology, 2015, 50, 34-42.	1.5	33
43	Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 241-244.	5.7	194
44	Simple faecal preparation and efficacy of frozen inoculum in faecal microbiota transplantation for recurrent <i><scp>C</scp>lostridium difficile</i> infection – an observational cohort study. Alimentary Pharmacology and Therapeutics, 2015, 41, 46-53.	3.7	129
45	Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatric Research, 2015, 77, 528-535.	2.3	52
46	The canine isolate Lactobacillus acidophilus LAB20 adheres to intestinal epithelium and attenuates LPS-induced IL-8 secretion of enterocytes in vitro. BMC Microbiology, 2015, 15, 4.	3.3	40
47	Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Applied and Environmental Microbiology, 2015, 81, 3655-3662.	3.1	437
48	Editorial: a simple faecal preparation for faecal microbiota transplantation – authors' reply. Alimentary Pharmacology and Therapeutics, 2015, 41, 321-321.	3.7	1
49	Fecal Transplantation Treatment of Antibiotic-Induced, Noninfectious Colitis and Long-Term Microbiota Follow-Up. Case Reports in Medicine, 2014, 2014, 1-7.	0.7	37
50	Intestinal microbiota during early life – impact on health and disease. Proceedings of the Nutrition Society, 2014, 73, 457-469.	1.0	54
51	Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. Journal of Medical Microbiology, 2014, 63, 293-308.	1.8	54
52	Sa1078 Simple and Practical Frozen Preparation for Transplantation of Fecal Microbiota for Recurrent Clostridium difficile Infection. Gastroenterology, 2014, 146, S-193-S-194.	1.3	3
53	Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiology, 2013, 13, 12.	3.3	127
54	Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterology, 2013, 13, 113.	2.0	124

REETTA SATOKARI

#	Article	IF	CITATIONS
55	Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG. PLoS Genetics, 2013, 9, e1003683.	3.5	180
56	Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics. Applied and Environmental Microbiology, 2013, 79, 1923-1933.	3.1	108
57	BopA Does Not Have a Major Role in the Adhesion of Bifidobacterium bifidum to Intestinal Epithelial Cells, Extracellular Matrix Proteins, and Mucus. Applied and Environmental Microbiology, 2013, 79, 6989-6997.	3.1	40
58	Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis. PLoS ONE, 2013, 8, e64315.	2.5	196
59	Using Recombinant Lactococci as an Approach to Dissect the Immunomodulating Capacity of Surface Piliation in Probiotic Lactobacillus rhamnosus GG. PLoS ONE, 2013, 8, e64416.	2.5	55
60	Expression of Microbiota, Tollâ€like Receptors, and Their Regulators in the Small Intestinal Mucosa in Celiac Disease. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54, 727-732.	1.8	94
61	Short-term consumption of probiotic lactobacilli has no effect on acid production of supragingival plaque. Clinical Oral Investigations, 2012, 16, 797-803.	3.0	55
62	Contribution of the Intestinal Microbiota to Human Health: From Birth to 100ÂYears of Age. Current Topics in Microbiology and Immunology, 2011, 358, 323-346.	1.1	51
63	Functional Characterization of a Mucus-Specific LPXTG Surface Adhesin from Probiotic Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 2011, 77, 4465-4472.	3.1	90
64	Mucosal Adhesion Properties of the Probiotic <i>Lactobacillus rhamnosus</i> GG SpaCBA and SpaFED Pilin Subunits. Applied and Environmental Microbiology, 2010, 76, 2049-2057.	3.1	189
65	Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS ONE, 2010, 5, e10667.	2.5	1,107
66	Semi-automated extraction of microbial DNA from feces for qPCR and phylogenetic microarray analysis. Journal of Microbiological Methods, 2010, 83, 231-235.	1.6	41
67	<i>Bifidobacterium</i> and <i>Lactobacillus</i> DNA in the human placenta. Letters in Applied Microbiology, 2009, 48, 8-12.	2.2	271
68	Comparative genomic analysis of <i>Lactobacillus rhamnosus</i> GG reveals pili containing a human- mucus binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17193-17198.	7.1	654
69	Probiotics and Prebiotics in Elderly Individuals. , 2009, , .		12
70	Real-time analysis of PCR inhibition on microfluidic materials. Sensors and Actuators B: Chemical, 2008, 128, 442-449.	7.8	19
71	TRAC in high-content gene expression analysis: applications in microbial population studies, process biotechnology and biomedical research. Expert Review of Molecular Diagnostics, 2008, 8, 379-385.	3.1	4
72	Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. Journal of Medical Microbiology, 2006, 55, 625-633.	1.8	146

REETTA SATOKARI

#	Article	IF	CITATIONS
73	Rapid and multiplexed transcript analysis of microbial cultures using capillary electophoresis-detectable oligonucleotide probe pools. Journal of Microbiological Methods, 2006, 65, 404-416.	1.6	35
74	A highly sensitive and multiplexed method for focused transcript analysis. Journal of Microbiological Methods, 2006, 67, 102-113.	1.6	9
75	Intestinal survival and persistence of probiotic Lactobacillus and Bifidobacterium strains administered in triple-strain yoghurt. International Dairy Journal, 2006, 16, 1174-1180.	3.0	54
76	PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoides–Eubacterium rectale group in the human intestinal microbiota. FEMS Microbiology Ecology, 2006, 58, 517-528.	2.7	61
77	Multiplexed Quantification of Bacterial 16S rRNA by Solution Hybridization with Oligonucleotide Probes and Affinity Capture. Microbial Ecology, 2005, 50, 120-127.	2.8	19
78	Diversity of Bifidobacterium and Lactobacillus spp. in Breast-Fed and Formula-Fed Infants as Assessed by 16S rDNA Sequence Differences. Microbial Ecology in Health and Disease, 2002, 14, 97-105.	3.5	43
79	Bifidobacterial Diversity in Human Feces Detected by Genus-Specific PCR and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2001, 67, 504-513.	3.1	392
80	Identification of pediococci by ribotyping. Journal of Applied Microbiology, 2000, 88, 260-265.	3.1	50
81	Probiotic bacteria and intestinal health: New methods of investigation. Journal of Physiology (Paris), 2000, 94, 157-158.	2.1	2
82	Detection of Spoilage Bacteria in Beer by Polymerase Chain Reaction. Journal of the American Society of Brewing Chemists, 1999, 57, 99-103.	1.1	42
83	Persistence of Colonization of Human Colonic Mucosa by a Probiotic Strain, <i>Lactobacillus rhamnosus</i> GG, after Oral Consumption. Applied and Environmental Microbiology, 1999, 65, 351-354.	3.1	463
84	Comparison of Ribotyping, Randomly Amplified Polymorphic DNA Analysis, and Pulsed-Field Gel Electrophoresis in Typing of Lactobacillus rhamnosus and L. casei Strains. Applied and Environmental Microbiology, 1999, 65, 3908-3914.	3.1	209
85	Molecular approaches to study probiotic bacteria. Trends in Food Science and Technology, 1999, 10, 400-404.	15.1	31
86	Detection of beer spoilage bacteria Megasphaera and Pectinatus by polymerase chain reaction and colorimetric microplate hybridization. International Journal of Food Microbiology, 1998, 45, 119-127.	4.7	47
87	Detection of Pectinatus Beer Spoilage Bacteria by Using the Polymerase Chain Reaction. Journal of Food Protection, 1997, 60, 1571-1573.	1.7	22