Thomas Moritz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434682/publications.pdf Version: 2024-02-01

		53751	37183
111	9,767	45	96
papers	citations	h-index	g-index
113	113	113	12218
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Colonic Lactulose Fermentation Has No Impact on Glucagon-like Peptide-1 and Peptide-YY Secretion in Healthy Young Men. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 77-87.	1.8	6
2	Multiomics and digital monitoring during lifestyle changes reveal independent dimensions of human biology and health. Cell Systems, 2022, 13, 241-255.e7.	2.9	8
3	Mixed-mode chromatography-mass spectrometry enables targeted and untargeted screening of carboxylic acids in biological samples. Analytical Methods, 2022, 14, 1015-1022.	1.3	1
4	Intravenous nicotinamide riboside elevates mouse skeletal muscle NAD+ without impacting respiratory capacity or insulin sensitivity. IScience, 2022, 25, 103863.	1.9	12
5	Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metabolism, 2022, 34, 329-345.e8.	7.2	86
6	Comparative analysis of oral and intraperitoneal glucose tolerance tests in mice. Molecular Metabolism, 2022, 57, 101440.	3.0	25
7	Loss of Sucrase-Isomaltase Function Increases Acetate Levels and Improves Metabolic Health in Greenlandic Cohorts. Gastroenterology, 2022, 162, 1171-1182.e3.	0.6	9
8	Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nature Metabolism, 2022, 4, 190-202.	5.1	21
9	Sucrose synthase activity is not required for cellulose biosynthesis in Arabidopsis. Plant Journal, 2022, 110, 1493-1497.	2.8	9
10	Metabolic control of arginine and ornithine levels paces the progression of leaf senescence. Plant Physiology, 2022, 189, 1943-1960.	2.3	15
11	Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. Biotechnology for Biofuels, 2021, 14, 43.	6.2	10
12	Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia, 2021, 64, 2077-2091.	2.9	20
13	A metabolomic study of Gomphrena agrestis in Brazilian Cerrado suggests drought-adaptive strategies on metabolism. Scientific Reports, 2021, 11, 12933.	1.6	0
14	Ecological Adaptation and Succession of Human Fecal Microbial Communities in an Automated <i>In Vitro</i> Fermentation System. MSystems, 2021, 6, e0023221.	1.7	5
15	Metabolic Profiling and Compound-Class Identification Reveal Alterations in Serum Triglyceride Levels in Mice Immunized with Human Vaccine Adjuvant Alum. Journal of Proteome Research, 2020, 19, 269-278.	1.8	5
16	Changes in lipid and carotenoid metabolism in Chlamydomonas reinhardtii during induction of CO2-concentrating mechanism: Cellular response to low CO2 stress. Algal Research, 2020, 52, 102099.	2.4	9
17	Differentiation of two Maytenus species and their hybrid via untargeted metabolomics. Industrial Crops and Products, 2020, 158, 113014.	2.5	3
18	Integration of molecular profiles in a longitudinal wellness profiling cohort. Nature	5.8	66

Communications, 2020, 11, 4487.

#	Article	IF	CITATIONS
19	A metabolite roadmap of the woodâ€forming tissue in <i>Populus tremula</i> . New Phytologist, 2020, 228, 1559-1572.	3.5	32
20	Plasma Metabolome Profiling of Resistance Exercise and Endurance Exercise in Humans. Cell Reports, 2020, 33, 108554.	2.9	74
21	Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics, 2019, 15, 130.	1.4	29
22	Lipidomics in Ulcerative Colitis Reveal Alteration in Mucosal Lipid Composition Associated With the Disease State. Inflammatory Bowel Diseases, 2019, 25, 1780-1787.	0.9	51
23	Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18, 25.	1.9	27
24	PECTIN ACETYLESTERASE9 Affects the Transcriptome and Metabolome and Delays Aphid Feeding. Plant Physiology, 2019, 181, 1704-1720.	2.3	27
25	Targeted Multiple Reaction Monitoring Analysis of CSF Identifies UCHL1 and GPNMB as Candidate Biomarkers for ALS. Journal of Molecular Neuroscience, 2019, 69, 643-657.	1.1	27
26	Mucosal Metabolomic Profiling and Pathway Analysis Reveal the Metabolic Signature of Ulcerative Colitis. Metabolites, 2019, 9, 291.	1.3	25
27	Two-step derivatization for determination of sugar phosphates in plants by combined reversed phase chromatography/tandem mass spectrometry. Plant Methods, 2019, 15, 127.	1.9	22
28	A Quantitative Analysis of Colonic Mucosal Oxylipins and Endocannabinoids in Treatment-NaÃ ⁻ ve and Deep Remission Ulcerative Colitis Patients and the Potential Link With Cytokine Gene Expression. Inflammatory Bowel Diseases, 2019, 25, 490-497.	0.9	29
29	A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus trees. BMC Genomics, 2018, 19, 11.	1.2	25
30	Simultaneous determination of ribonucleoside and deoxyribonucleoside triphosphates in biological samples by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Nucleic Acids Research, 2018, 46, e66-e66.	6.5	40
31	Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival. Plant Physiology, 2018, 177, 132-150.	2.3	62
32	Optimising methods for the recovery and quantification of di- and tripeptides in soil. Soil Research, 2018, 56, 404.	0.6	8
33	Metabolic Profiling of Multiorgan Samples: Evaluation of MODY5/RCAD Mutant Mice. Journal of Proteome Research, 2018, 17, 2293-2306.	1.8	4
34	At <i>bHLH68</i> transcription factor contributes to the regulation of <scp>ABA</scp> homeostasis and drought stress tolerance in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2017, 160, 312-327.	2.6	76
35	Defense Responses in Aspen with Altered Pectin Methylesterase Activity Reveal the Hormonal Inducers of Tyloses. Plant Physiology, 2017, 173, 1409-1419.	2.3	46
36	Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal <i>Medicago truncatula</i> . Plant Physiology, 2017, 175, 392-411.	2.3	81

#	Article	IF	CITATIONS
37	Metabolome and transcriptome profiling reveal new insights into somatic embryo germination in Norway spruce (Picea abies). Tree Physiology, 2017, 37, 1752-1766.	1.4	24
38	Nitrogen uptake and assimilation in proliferating embryogenic cultures of Norway spruce—Investigating the specific role of glutamine. PLoS ONE, 2017, 12, e0181785.	1.1	18
39	Longitudinal analysis of hepatic transcriptome and serum metabolome demonstrates altered lipid metabolism following the onset of hyperglycemia in spontaneously diabetic biobreeding rats. PLoS ONE, 2017, 12, e0171372.	1.1	5
40	Functional metabolomics as a tool to analyze Mediator function and structure in plants. PLoS ONE, 2017, 12, e0179640.	1.1	13
41	Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis. Frontiers in Plant Science, 2016, 7, 932.	1.7	8
42	Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure. Plant Physiology, 2016, 172, 2057-2078.	2.3	29
43	Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development. BMC Genomics, 2016, 17, 119.	1.2	35
44	Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects. Molecular BioSystems, 2016, 12, 1287-1298.	2.9	108
45	Metabolomic Quality Assessment of EDTA Plasma and Serum Samples. Biopreservation and Biobanking, 2016, 14, 416-423.	0.5	22
46	Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence. Plant Physiology, 2016, 172, 2132-2153.	2.3	91
47	Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by ¹³ C labelling. Journal of Experimental Botany, 2016, 67, 3123-3135.	2.4	54
48	Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling. PLoS ONE, 2015, 10, e0129260.	1.1	22
49	¹³ C Tracking after ¹³ CO ₂ Supply Revealed Diurnal Patterns of Wood Formation in Aspen. Plant Physiology, 2015, 168, 478-489.	2.3	10
50	Silencing C ₁₉ -GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. Journal of Experimental Botany, 2015, 66, 5897-5910.	2.4	82
51	Transgenic hybrid aspen trees with increased gibberellin (<scp>GA</scp>) concentrations suggest that <scp>GA</scp> acts in parallel with <scp>FLOWERING LOCUS T</scp> 2 to control shoot elongation. New Phytologist, 2015, 205, 1288-1295.	3.5	36
52	Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology. Metabolomics, 2015, 11, 1679-1689.	1.4	23
53	Serum Metabolomic Biomarkers of Dementia. Dementia and Geriatric Cognitive Disorders Extra, 2014, 4, 252-262.	0.6	43
54	CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nature Communications, 2014, 5, 4276.	5.8	69

#	Article	IF	CITATIONS
55	Metabolite and Peptide Levels in Plasma and CSF Differentiating Healthy Controls from Patients with Newly Diagnosed Parkinson's Disease. Journal of Parkinson's Disease, 2014, 4, 549-560.	1.5	99
56	Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant Journal, 2014, 78, 372-384.	2.8	105
57	No Evidence of Geographical Structure of Salicinoid Chemotypes within Populus Tremula. PLoS ONE, 2014, 9, e107189.	1.1	39
58	OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipl- superoxide dismutase Populus plants. BMC Genomics, 2013, 14, 893.	1.2	63
59	Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiology, 2012, 32, 232-244.	1.4	63
60	Strategy for Optimizing LC-MS Data Processing in Metabolomics: A Design of Experiments Approach. Analytical Chemistry, 2012, 84, 6869-6876.	3.2	92
61	Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2012, 95, 95-100.	2.6	79
62	Altered Metabolic Signature in Pre-Diabetic NOD Mice. PLoS ONE, 2012, 7, e35445.	1.1	14
63	Proper gibberellin localization in vascular tissue is required to control auxinâ€dependent leaf development and bud outgrowth in hybrid aspen. Plant Journal, 2011, 67, 805-816.	2.8	71
64	The sucroseâ€regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. New Phytologist, 2011, 191, 733-745.	3.5	138
65	UHPLC-ESI/TOFMS Determination of Salicylate-like Phenolic Gycosides in Populus tremula Leaves. Journal of Chemical Ecology, 2011, 37, 857-870.	0.9	66
66	Serum metabolite signature predicts the acute onset of diabetes in spontaneously diabetic congenic BB rats. Metabolomics, 2011, 7, 593-603.	1.4	11
67	LCâ€MS/MS profiling for detection of endogenous steroids and prostaglandins in tissue samples. Journal of Separation Science, 2011, 34, 2650-2658.	1.3	24
68	Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus. Plant Molecular Biology, 2010, 73, 143-156.	2.0	63
69	A Metabolomic Approach to Study Major Metabolite Changes during Acclimation to Limiting CO2 in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2010, 154, 187-196.	2.3	80
70	Analyses of <i>GA20ox</i> ―and <i>GID1</i> â€overâ€expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant Journal, 2009, 58, 989-1003.	2.8	161
71	Compensation for Systematic Cross-Contribution Improves Normalization of Mass Spectrometry Based Metabolomics Data. Analytical Chemistry, 2009, 81, 7974-7980.	3.2	173
72	An Auxin Gradient and Maximum in the <i>Arabidopsis</i> Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell, 2009, 21, 1659-1668.	3.1	439

#	Article	IF	CITATIONS
73	Metabolomics as a tool to evaluate exercise-induced improvements in insulin sensitivity. Metabolomics, 2008, 4, 273-282.	1.4	18
74	Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of Biochemically Interesting Compounds Using OPLS Class Models. Analytical Chemistry, 2008, 80, 115-122.	3.2	1,053
75	Reduced gibberellin response affects ethylene biosynthesis and responsiveness in the Arabidopsis <i>gai eto2â€l </i> double mutant. New Phytologist, 2008, 177, 128-141.	3.5	17
76	Crossâ€ŧalk between gibberellin and auxin in development of <i>Populus</i> wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant Journal, 2007, 52, 499-511.	2.8	208
77	Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant Journal, 2007, 52, 1181-1191.	2.8	209
78	Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics. Metabolomics, 2007, 2, 257-268.	1.4	19
79	Biosynthesis of cellulose-enriched tension wood inPopulus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant Journal, 2006, 45, 144-165.	2.8	347
80	A strategy for modelling dynamic responses in metabolic samples characterized by GC/MS. Metabolomics, 2006, 2, 135-143.	1.4	24
81	Extraction and GC/MS Analysis of the Human Blood Plasma Metabolome. Analytical Chemistry, 2005, 77, 8086-8094.	3.2	464
82	Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant Journal, 2005, 44, 494-504.	2.8	153
83	GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 2005, 579, 1332-1337.	1.3	596
84	High-Throughput Data Analysis for Detecting and Identifying Differences between Samples in GC/MS-Based Metabolomic Analyses. Analytical Chemistry, 2005, 77, 5635-5642.	3.2	383
85	AtGA3ox2, a Key Gene Responsible for Bioactive Gibberellin Biosynthesis, Is Regulated during Embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiology, 2004, 136, 3660-3669.	2.3	216
86	Cloning and Overproduction of Gibberellin 3-Oxidase in Hybrid Aspen Trees. Effects on Gibberellin Homeostasis and Development. Plant Physiology, 2004, 135, 221-230.	2.3	71
87	Gibberellins and the floral transition in Sinapis alba. Physiologia Plantarum, 2004, 122, 152-158.	2.6	11
88	Derivatization for LC-Electrospray Ionization-MS:Â A Tool for Improving Reversed-Phase Separation and ESI Responses of Bases, Ribosides, and Intact Nucleotides. Analytical Chemistry, 2004, 76, 2869-2877.	3.2	89
89	Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 2004, 331, 283-295.	1.1	424
90	Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen. Plant Physiology, 2002, 129, 1633-1641.	2.3	175

#	Article	IF	CITATIONS
91	Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus) Tj ETQq1 1	0.784314 rgB	BT/Overlock
92	Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine. Plant Physiology, 2001, 125, 2029-2039.	2.3	208
93	Gibberellins Are Not Required for Normal Stem Growth in <i>Arabidopsis thaliana</i> in the Absence of GAI and RGA. Genetics, 2001, 159, 767-776.	1.2	244
94	Deuteriumin vivo labelling of cytokinins inArabidopsis thaliana analysed by capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. , 2000, 35, 13-22.		17
95	Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant Journal, 2000, 23, 279-284.	2.8	66
96	Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 2000, 18, 784-788.	9.4	497
97	The Arabidopsis Dwarf Mutant shi Exhibits Reduced Gibberellin Responses Conferred by Overexpression of a New Putative Zinc Finger Protein. Plant Cell, 1999, 11, 1019-1031.	3.1	158
98	Precolumn derivatization and capillary liquid chromatographic/frit-fast atom bombardment mass spectrometric analysis of cytokinins inArabidopsis thaliana. , 1998, 33, 892-902.		38
99	Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant Journal, 1997, 12, 1339-1350.	2.8	264
100	Endogenous cytokinins in the vascular cambial region of Pinus sylvestris during activity and dormancy. Physiologia Plantarum, 1996, 98, 693-698.	2.6	29
101	Liquid chromatography/fast atom bombardment and electrospray ionization mass spectrometry of gibberellin A3 1,2-trans-glycosyl esters. Journal of Mass Spectrometry, 1995, 30, 1489-1494.	0.7	6
102	Relations between cytokinin level, bud development and apical control in Norway spruce, Picea abies. Physiologia Plantarum, 1995, 95, 563-568.	2.6	29
103	Separation and identification of cytokinins using combined capillary liquid chromatography/mass spectrometry. Biological Mass Spectrometry, 1993, 22, 201-210.	0.5	14
104	The use of combined capillary liquid chromatography/mass spectrometry for the identification of a gibberellin glucosyl conjugate. Phytochemical Analysis, 1992, 3, 32-37.	1.2	19
105	Liquid chromatography/mass spectrometry of conjugates and oxidative metabolites of indole-3-acetic acid. Biological Mass Spectrometry, 1992, 21, 292-298.	0.5	37
106	Capillary liquid chromatography/fast atom bombardment mass spectrometry of gibberellin glucosyl conjugates. Biological Mass Spectrometry, 1992, 21, 554-559.	0.5	14
107	Metabolism of tritiated and deuterated gibberellin A9 in Norway spruce (Picea abies) shoots during the period of cone-bud differentiation. Physiologia Plantarum, 1990, 79, 242-249.	2.6	19
108	Quantitation of gibberellins A1, A3, A4, A9 and an A9-conjugate in good- and poor-flowering clones of Sitka spruce (Picea sitchensis) during the period of flower-bud differentiation. Planta, 1990, 181, 538-42.	1.6	17

#	Article	IF	CITATIONS
109	Quantitation of Gibberellins A1, A3, A4, A9 and a Putative A9-Conjugate in Grafts of Sitka Spruce (Picea) Tj ETQq1	1.0.7843 2.3	14.rgBT /0∨ 16
110	Detection and identification of gibberellins in Sitka spruce (Picea sitchensis) of different ages and coning ability by bioassay, radioimmunoassay and gas chromatography - mass spectrometry. Physiologia Plantarum, 1989, 75, 325-332.	2.6	26
111	Metabolism of tritiated and deuterated gibberellins A1, A4 and A9 in Sitka spruce (Picea sitchensis) shoots during the period of cone-bud differentiation. Physiologia Plantarum, 1989, 77, 39-45.	2.6	25