Sonja Boland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology, 2009, 260, 142-149.	2.0	294
2	Organic Compounds from Diesel Exhaust Particles Elicit a Proinflammatory Response in Human Airway Epithelial Cells and Induce Cytochrome p450 1A1 Expression. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 515-521.	1.4	254
3	Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic <i>in vitro</i> tests. Nanotoxicology, 2015, 9, 13-24.	1.6	212
4	Nanoparticles: molecular targets and cell signalling. Archives of Toxicology, 2011, 85, 733-741.	1.9	202
5	Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Particle and Fibre Toxicology, 2010, 7, 10.	2.8	198
6	Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Particle and Fibre Toxicology, 2013, 10, 2.	2.8	172
7	Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environmental Pollution, 2017, 230, 125-133.	3.7	152
8	An in vitroassessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrology, 2013, 14, 96.	0.8	105
9	Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: Need for multiparametric evaluation due to adsorption artifacts. Inhalation Toxicology, 2009, 21, 115-122.	0.8	77
10	Acute exposure to silica nanoparticles enhances mortality and increases lung permeability in a mouse model of Pseudomonas aeruginosa pneumonia. Particle and Fibre Toxicology, 2015, 12, 1.	2.8	57
11	Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles. Nanotoxicology, 2015, 9, 57-65.	1.6	53
12	Analytical methods to assess the oxidative potential of nanoparticles: a review. Environmental Science: Nano, 2017, 4, 1920-1934.	2.2	53
13	Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO2 nanoparticles. Archives of Toxicology, 2017, 91, 353-363.	1.9	51
14	Development of a repeated exposure protocol of human bronchial epithelium in vitro to study the long-term effects of atmospheric particles. Toxicology in Vitro, 2013, 27, 533-542.	1.1	50
15	Toxicological Evaluation of SiO2 Nanoparticles by Zebrafish Embryo Toxicity Test. International Journal of Molecular Sciences, 2019, 20, 882.	1.8	48
16	Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology, 2015, 9, 25-32.	1.6	47
17	Carbon black and titanium dioxide nanoparticles induce distinct molecular mechanisms of toxicity. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 641-652.	3.3	44
18	Intracellular Signal Modulation by Nanomaterials. Advances in Experimental Medicine and Biology, 2014, 811, 111-134.	0.8	41

Sonja Boland

#	Article	IF	CITATIONS
19	Internalization of SiO2 nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf®. Environmental Science and Pollution Research, 2013, 20, 2761-2770.	2.7	36
20	Development of an in vitro model of human bronchial epithelial barrier to study nanoparticle translocation. Toxicology in Vitro, 2015, 29, 51-58.	1.1	35
21	Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. Nanoscale, 2015, 7, 4529-4544.	2.8	33
22	Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Archives of Toxicology, 2017, 91, 163-177.	1.9	32
23	Mechanisms of Uptake and Translocation of Nanomaterials in the Lung. Advances in Experimental Medicine and Biology, 2018, 1048, 21-36.	0.8	28
24	Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation. Experimental Cell Research, 2007, 313, 2695-2702.	1.2	27
25	Expression, Localization, and Activity of the Aryl Hydrocarbon Receptor in the Human Placenta. International Journal of Molecular Sciences, 2018, 19, 3762.	1.8	24
26	Nano-titanium dioxide modulates the dermal sensitization potency of DNCB. Particle and Fibre Toxicology, 2012, 9, 15.	2.8	22
27	Diesel Particles Are Taken Up by Alveolar Type II Tumor Cells and Alter Cytokines Secretion. Archives of Environmental Health, 2002, 57, 53-60.	0.4	21
28	Prior Lung Inflammation Impacts on Body Distribution of Gold Nanoparticles. BioMed Research International, 2013, 2013, 1-6.	0.9	16
29	Uptake of Cerium Dioxide Nanoparticles and Impact on Viability, Differentiation and Functions of Primary Trophoblast Cells from Human Placenta. Nanomaterials, 2020, 10, 1309.	1.9	12
30	Long-term evolution of the epithelial cell secretome in preclinical 3D models of the human bronchial epithelium. Scientific Reports, 2021, 11, 6621.	1.6	10
31	On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 12266.	1.8	8
32	Functionalized Surface-Charged SiO ₂ Nanoparticles Induce Pro-Inflammatory Responses, but Are Not Lethal to Caco-2 Cells. Chemical Research in Toxicology, 2020, 33, 1226-1236.	1.7	7
33	Co-culture of type I and type II pneumocytes as a model of alveolar epithelium. PLoS ONE, 2021, 16, e0248798.	1.1	7
34	Cellular Mechanisms of Nanoparticle Toxicity. , 2016, , 498-505.		6
35	Development of methodology for alternative testing strategies for the assessment of the toxicological profile of nanoparticles used in medical diagnostics. NanoTEST – EC FP7 project. Journal of Physics: Conference Series, 2009, 170, 012039.	0.3	3
36	Titanium dioxide and carbon black nanoparticles disrupt neuronal homeostasis via excessive activation of cellular prion protein signaling. Particle and Fibre Toxicology, 2022, 19, .	2.8	3

0

#	Article	IF	CITATIONS
37	Fate and Health Impact of Inorganic Manufactured Nanoparticles. , 2013, , 245-267.		2

Cellular Mechanisms of Nanoparticle Toxicity. , 2015, , 1-9.