
Susana Ravassa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/443422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heart failure in chronic kidney disease: the emerging role of myocardial fibrosis. Nephrology Dialysis Transplantation, 2022, 37, 817-824.	0.4	15
2	Biomarkerâ€based assessment of collagen crossâ€linking identifies patients at risk of heart failure more likely to benefit from spironolactone effects on left atrial remodelling. Insights from the <scp>HOMAGE</scp> clinical trial. European Journal of Heart Failure, 2022, 24, 321-331.	2.9	16
3	Lipocalin-2 and Calprotectin Potential Prognosis Biomarkers in Peripheral Arterial Disease. European Journal of Vascular and Endovascular Surgery, 2022, 63, 648-656.	0.8	8
4	A Fibrosis Biomarker Early Predicts Cardiotoxicity Due to Anthracycline-Based Breast Cancer Chemotherapy. Cancers, 2022, 14, 2941.	1.7	4
5	Glucose-Dependent Insulinotropic Peptide in the High-Normal Range Is Associated With Increased Carotid Intima-Media Thickness. Diabetes Care, 2021, 44, 224-230.	4.3	20
6	Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nature Reviews Cardiology, 2021, 18, 479-498.	6.1	128
7	Reprint of "The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linkingâ€: Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118521.	1.9	7
8	Myocardial interstitial fibrosis in the era of precision medicine. Biomarker-based phenotyping for a personalized treatment. Revista Espanola De Cardiologia (English Ed), 2020, 73, 248-254.	0.4	4
9	Does Chronic Kidney Disease Facilitate Malignant Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction of Hypertensive Origin?. Journal of Clinical Medicine, 2020, 9, 404.	1.0	15
10	Functional and transcriptomic analysis of extracellular vesicles identifies calprotectin as a new prognostic marker in peripheral arterial disease (PAD). Journal of Extracellular Vesicles, 2020, 9, 1729646.	5.5	34
11	Cardiorenal interaction and heart failure outcomes. A role for insulin-like growth factor binding protein 2?. Revista Espanola De Cardiologia (English Ed), 2020, 73, 835-843.	0.4	5
12	La fibrosis intersticial miocárdica en la era de la medicina de precisión. El fenotipado basado en biomarcadores para un tratamiento personalizado. Revista Espanola De Cardiologia, 2020, 73, 248-254.	0.6	8
13	Biomarkers of Cardiovascular Disease. , 2019, , 319-330.		0
14	Circulating Long Noncoding RNA LIPCAR Predicts Heart Failure Outcomes in Patients Without Chronic Kidney Disease. Hypertension, 2019, 73, 820-828.	1.3	41
15	The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1421-1432.	1.9	50
16	Association of left atrium voltage amplitude and distribution with the risk of atrial fibrillation recurrence and evolution after pulmonary vein isolation: An ultrahighâ€density mapping study. Journal of Cardiovascular Electrophysiology, 2019, 30, 1231-1240.	0.8	8
17	Combination of Circulating Type I Collagen-Related Biomarkers Is AssociatedÂWith AtrialÂFibrillation. Journal of the American College of Cardiology, 2019, 73, 1398-1410.	1.2	54
18	CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) Axis in Cardiac Fibrosis and Inflammation. Hypertension, 2019, 73. 602-611.	1.3	78

SUSANA RAVASSA

#	Article	IF	CITATIONS
19	Circulating Biomarkers Predicting Longitudinal Changes in Left Ventricular Structure and Function in a General Population. Journal of the American Heart Association, 2019, 8, e010430.	1.6	5
20	Aging and atrial fibrillation: a matter of fibrosis. Aging, 2019, 11, 9965-9966.	1.4	16
21	Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. European Heart Journal, 2018, 39, 699-709.	1.0	178
22	Biomarkerâ€based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldoâ€DHF trial. European Journal of Heart Failure, 2018, 20, 1290-1299.	2.9	64
23	Investigating a biomarkerâ€driven approach to target collagen turnover in diabetic heart failure with preserved ejection fraction patients. Effect of torasemide versus furosemide on serum Câ€terminal propeptide of procollagen type I (DROPâ€PIP trial). European Journal of Heart Failure, 2018, 20, 460-470.	2.9	29
24	Myocardial Remodeling in Hypertension. Hypertension, 2018, 72, 549-558.	1.3	123
25	Immunomodulation by adoptive regulatory Tâ€cell transfer improves Coxsackievirus B3â€induced myocarditis. FASEB Journal, 2018, 32, 6066-6078.	0.2	42
26	Role of Myocardial Collagen in Severe Aortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Revista Espanola De Cardiologia (English Ed), 2017, 70, 832-840.	0.4	18
27	Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites. Scientific Reports, 2017, 7, 41865.	1.6	21
28	MicroRNA-19b is a potential biomarker of increased myocardial collagen cross-linking in patients with aortic stenosis and heart failure. Scientific Reports, 2017, 7, 40696.	1.6	39
29	Phenotyping of myocardial fibrosis in hypertensive patients with heart failure. Influence on clinical outcome. Journal of Hypertension, 2017, 35, 853-861.	0.3	58
30	A Urinary Fragment of Mucin-1 Subunit α Is a Novel Biomarker Associated With Renal Dysfunction in the General Population. Kidney International Reports, 2017, 2, 811-820.	0.4	24
31	Usefulness of Collagen Carboxy-Terminal Propeptide and Telopeptide to Predict Disturbances of Long-Term Mortality in Patients ≥60ÂYears With Heart Failure and Reduced Ejection Fraction. American Journal of Cardiology, 2017, 119, 2042-2048.	0.7	24
32	Novel Urinary Peptidomic Classifier Predicts Incident Heart Failure. Journal of the American Heart Association, 2017, 6, .	1.6	30
33	The Hypertensive Myocardium. Medical Clinics of North America, 2017, 101, 43-52.	1.1	21
34	Association of cystatin C with heart failure with preserved ejection fraction in elderly hypertensive patients. Journal of Hypertension, 2016, 34, 130-138.	0.3	30
35	Understanding the Role of CCN Matricellular Proteins in Myocardial Fibrosis â^—. Journal of the American College of Cardiology, 2016, 67, 1569-1571.	1.2	4
36	Potential role of microRNA-10b down-regulation in cardiomyocyte apoptosis in aortic stenosis patients. Clinical Science, 2016, 130, 2139-2149.	1.8	12

SUSANA RAVASSA

#	Article	IF	CITATIONS
37	Myocardial Collagen Cross-Linking IsÂAssociated With Heart Failure Hospitalization in Patients With Hypertensive Heart Failure. Journal of the American College of Cardiology, 2016, 67, 251-260.	1.2	127
38	Diastolic Left Ventricular Function in Relation to Urinary and Serum Collagen Biomarkers in a General Population. PLoS ONE, 2016, 11, e0167582.	1.1	22
39	Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: A pilot study. Free Radical Biology and Medicine, 2015, 81, 1-12.	1.3	27
40	Circulating Biomarkers of Myocardial Fibrosis. Journal of the American College of Cardiology, 2015, 65, 2449-2456.	1.2	196
41	Biomarkers of cardiomyocyte injury and stress identify left atrial and left ventricular remodelling and dysfunction: A population-based study. International Journal of Cardiology, 2015, 185, 177-185.	0.8	31
42	The activity of circulating dipeptidyl peptidase-4 is associated with subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Cardiovascular Diabetology, 2013, 12, 143.	2.7	24
43	Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase?. Cardiovascular Research, 2013, 99, 111-120.	1.8	113
44	Association of cardiotrophin-1 with left ventricular systolic properties in asymptomatic hypertensive patients. Journal of Hypertension, 2013, 31, 587-594.	0.3	17
45	Contribution of circulating biomarkers to unravel the role of extracellular matrix in hypertensive cardiac remodelling. Journal of Hypertension, 2012, 30, 34-37.	0.3	2
46	Péptido similar al glucagón tipo 1 y supervivencia de la célula cardiaca. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2012, 59, 561-569.	0.8	8
47	Glucagon-like peptide 1 and cardiac cell survival. EndocrinologÃa Y Nutrición (English Edition), 2012, 59, 561-569.	0.5	6
48	GLP-1 and cardioprotection: from bench to bedside. Cardiovascular Research, 2012, 94, 316-323.	1.8	93
49	Cardiotrophin-1 in hypertensive heart disease. Endocrine, 2012, 42, 9-17.	1.1	22
50	New Targets to Treat the Structural Remodeling of the Myocardium. Journal of the American College of Cardiology, 2011, 58, 1833-1843.	1.2	147
51	Towards the molecular diagnosis of hypertensive heart disease?. Journal of Hypertension, 2011, 29, 660-662.	0.3	1
52	Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1361-H1372.	1.5	70
53	Is the Deficiency of the Long Isoform of Cellular FLICE-Inhibitory Protein Involved in Myocardial Remodeling?. Hypertension, 2010, 56, 1045-1046.	1.3	1
54	Cardiac resynchronization therapy-induced left ventricular reverse remodelling is associated with reduced plasma annexin A5. Cardiovascular Research, 2010, 88, 304-313.	1.8	25

SUSANA RAVASSA

#	Article	IF	CITATIONS
55	Renin–Angiotensin–Aldosterone System and Cardiomyocyte Apoptosis in Hypertensive Heart Disease. , 2009, , 143-150.		1
56	Overexpression of human truncated peroxisome proliferator-activated receptor induces apoptosis in HL-1 cardiomyocytes. Cardiovascular Research, 2008, 79, 458-463.	1.8	11
57	Biochemical markers of myocardial remodelling in hypertensive heart disease. Cardiovascular Research, 2008, 81, 509-518.	1.8	73
58	Upregulation of myocardial Annexin A5 in hypertensive heart disease: association with systolic dysfunction. European Heart Journal, 2007, 28, 2785-2791.	1.0	37
59	Association of depressed cardiac gp130-mediated antiapoptotic pathways with stimulated cardiomyocyte apoptosis in hypertensive patients with heart failure. Journal of Hypertension, 2007, 25, 2148-2157.	0.3	44
60	Avances en cardiopatÃa hipertensiva. Mecanismos de remodelado implicados en la transición de la hipertrofia a la insuficiencia cardiaca. Revista Espanola De Cardiologia Suplementos, 2007, 7, 14F-21F.	0.2	0
61	Apoptosis in hypertensive heart disease: a clinical approach. Current Opinion in Cardiology, 2006, 21, 288-294.	0.8	23
62	Annexin A5 Down-regulates Surface Expression of Tissue Factor. Journal of Biological Chemistry, 2005, 280, 6028-6035.	1.6	56
63	Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovascular Research, 2003, 59, 549-562.	1.8	110
64	Clinical implications of apoptosis in hypertensive heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1495-H1506.	1.5	45
65	Stimulation of Cardiac Apoptosis in Essential Hypertension. Hypertension, 2002, 39, 75-80.	1.3	102
66	Effects of Antihypertensive Agents on the Left Ventricle. American Journal of Cardiovascular Drugs, 2001, 1, 263-279.	1.0	20
67	Cardiomyocyte Apoptotic Cell Death in Arterial Hypertension. Hypertension, 2001, 38, 1406-1412.	1.3	82
68	Mechanisms of Increased Susceptibility to Angiotensin II–Induced Apoptosis in Ventricular Cardiomyocytes of Spontaneously Hypertensive Rats. Hypertension, 2000, 36, 1065-1071.	1.3	59
69	p53-Mediated Upregulation of BAX Gene Transcription Is Not Involved in Bax-α Protein Overexpression in the Left Ventricle of Spontaneously Hypertensive Rats. Hypertension, 1999, 33, 1348-1352.	1.3	20
70	Torasemide Inhibits Angiotensin II–Induced Vasoconstriction and Intracellular Calcium Increase in the Aorta of Spontaneously Hypertensive Rats. Hypertension, 1999, 34, 138-143.	1.3	48
71	Overexpression of Bax Protein and Enhanced Apoptosis in the Left Ventricle of Spontaneously Hypertensive Rats. Hypertension, 1998, 32, 280-286.	1.3	125
72	Apoptosis in hypertensive heart disease. Current Opinion in Cardiology, 1998, 13, 317-326.	0.8	64