
Javier Blesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434124/publications.pdf Version: 2024-02-01

INVIED RIESA

#	Article	IF	CITATIONS
1	Neuron types in the primate striatum: Stereological analysis of projection neurons and interneurons in control and parkinsonian monkeys. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	10
2	Cerebral metabolic pattern associated with progressive parkinsonism in non-human primates reveals early cortical hypometabolism. Neurobiology of Disease, 2022, 167, 105669.	2.1	5
3	Motor and non-motor circuit disturbances in early Parkinson disease: which happens first?. Nature Reviews Neuroscience, 2022, 23, 115-128.	4.9	92
4	Striatal <scp>Blood–Brain</scp> Barrier Opening in Parkinson's Disease Dementia: A Pilot Exploratory Study. Movement Disorders, 2022, 37, 2057-2065.	2.2	25
5	Glial activation precedes alpha-synuclein pathology in a mouse model of Parkinson's disease. Neuroscience Research, 2021, 170, 330-340.	1.0	23
6	Oral subchronic exposure to the mycotoxin ochratoxin A induces key pathological features of Parkinson's disease in mice six months after the end of the treatment. Food and Chemical Toxicology, 2021, 152, 112164.	1.8	16
7	Lack of Parkinsonian Pathology and Neurodegeneration in Mice After Long-Term Injections of a Proteasome Inhibitor in Olfactory Bulb and Amygdala. Frontiers in Aging Neuroscience, 2021, 13, 698979.	1.7	2
8	Serotonergic innervation of the striatum in a nonhuman primate model of Parkinson's disease. Neuropharmacology, 2020, 170, 107806.	2.0	12
9	Changes in Thalamic Dopamine Innervation in a Progressive Parkinson's Disease Model in Monkeys. Movement Disorders, 2020, 35, 419-430.	2.2	23
10	Molecular targets for endogenous glial cell line-derived neurotrophic factor modulation in striatal parvalbumin interneurons. Brain Communications, 2020, 2, fcaa105.	1.5	13
11	Focused ultrasound in Parkinson's disease: A twofold path toward disease modification. Movement Disorders, 2019, 34, 1262-1273.	2.2	25
12	Blood–brain barrier opening with focused ultrasound in experimental models of Parkinson's disease. Movement Disorders, 2019, 34, 1252-1261.	2.2	32
13	Systemic Exosomal Delivery of shRNA Minicircles Prevents Parkinsonian Pathology. Molecular Therapy, 2019, 27, 2111-2122.	3.7	120
14	Parkinson disease, substantia nigra vulnerability, and calbindin expression: Enlightening the darkness?. Movement Disorders, 2019, 34, 161-163.	2.2	7
15	Novel models for Parkinson's disease and their impact on future drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 229-239.	2.5	22
16	The use of nonhuman primate models to understand processes in Parkinson's disease. Journal of Neural Transmission, 2018, 125, 325-335.	1.4	19
17	Advances in Parkinson's Disease: 200 Years Later. Frontiers in Neuroanatomy, 2018, 12, 113.	0.9	102
18	<scp>P</scp> arkinson's disease: <scp>O</scp> h my gut!. Movement Disorders, 2017, 32, 396-396.	2.2	1

JAVIER BLESA

#	Article	IF	CITATIONS
19	Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Experimental Neurology, 2017, 298, 148-161.	2.0	175
20	Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys. Frontiers in Neuroanatomy, 2017, 11, 46.	0.9	8
21	Parkinson's disease and thalamus: facts and fancy. Lancet Neurology, The, 2016, 15, e2.	4.9	8
22	Vive la difference! Dissecting the diversity of midbrain dopamine neurons. Movement Disorders, 2016, 31, 41-41.	2.2	1
23	Parkinson's Disease-Associated Mutations Affect Mitochondrial Function. , 2016, , 139-158.		1
24	Oxidative stress and Parkinsonâ \in ^M s disease. Frontiers in Neuroanatomy, 2015, 9, 91.	0.9	639
25	Editorial: Parkinson's disease: cell vulnerability and disease progression. Frontiers in Neuroanatomy, 2015, 9, 125.	0.9	11
26	Identification of neurodegenerative factors using translatome–regulatory network analysis. Nature Neuroscience, 2015, 18, 1325-1333.	7.1	113
27	α-Synuclein-Independent Histopathological and Motor Deficits in Mice Lacking the Endolysosomal Parkinsonism Protein Atp13a2. Journal of Neuroscience, 2015, 35, 5724-5742.	1.7	87
28	Lewy body extracts from Parkinson disease brains trigger αâ€synuclein pathology and neurodegeneration in mice and monkeys. Annals of Neurology, 2014, 75, 351-362.	2.8	521
29	VMAT2 and Parkinson's disease: Old dog, new tricks. Movement Disorders, 2014, 29, 1241-1241.	2.2	0
30	Is Parkinson's Disease a Vesicular Dopamine Storage Disorder? Evidence from a Study in Isolated Synaptic Vesicles of Human and Nonhuman Primate Striatum. Journal of Neuroscience, 2014, 34, 8210-8218.	1.7	136
31	Parkinsonââ,¬â"¢s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 2014, 8, 155.	0.9	370
32	Parkinson's Disease: "Braak―to the future. Movement Disorders, 2013, 28, 1209-1209.	2.2	3
33	Reduced noradrenaline, but not dopamine and serotonin in motor thalamus of the MPTP primate: relation to severity of Parkinsonism. Journal of Neurochemistry, 2013, 125, 657-662.	2.1	35
34	Classic and New Animal Models of Parkinson's Disease. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	360
35	Sonic Hedgehog Maintains Cellular and Neurochemical Homeostasis in the Adult Nigrostriatal Circuit. Neuron, 2012, 75, 306-319.	3.8	130
36	Animal models of Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S183-S185.	1.1	145

JAVIER BLESA

11

#	Article	IF	CITATIONS
37	Inter-hemispheric asymmetry of nigrostriatal dopaminergic lesion: a possible compensatory mechanism in Parkinson's disease. Frontiers in Systems Neuroscience, 2011, 5, 92.	1.2	48
38	Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An 18F-DOPA and 11C-DTBZ PET study. Neurobiology of Disease, 2010, 38, 456-463.	2.1	66
39	Compensatory Mechanisms in Experimental and Human Parkinsonism. Handbook of Behavioral Neuroscience, 2010, , 641-652.	0.7	3
40	No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Movement Disorders, 2009, 24, 1519-1523.	2.2	72
41	New MRI, 18F-DOPA and 11C-(+)-α-dihydrotetrabenazine templates for Macaca fascicularis neuroimaging: Advantages to improve PET quantification. NeuroImage, 2009, 47, 533-539.	2.1	24
42	Lesion of the centromedian thalamic nucleus in MPTPâ€ŧreated monkeys. Movement Disorders, 2008, 23, 708-715.	2.2	29
43	Functional organization of the basal ganglia: Therapeutic implications for Parkinson's disease. Movement Disorders, 2008, 23, S548-S559.	2.2	453
44	The basal ganglia in Parkinson's disease: Current concepts and unexplained observations. Annals of Neurology, 2008, 64, S30-S46.	2.8	205
45	Bone-marrow-derived cell differentiation into microglia: A study in a progressive mouse model of Parkinson's disease. Neurobiology of Disease, 2007, 28, 316-325.	2.1	62

46 Animal Models of Parkinson's Disease. , 0, , .