Joshua M Spin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4434012/publications.pdf

Version: 2024-02-01

471061 476904 1,334 33 17 29 citations h-index g-index papers 33 33 33 2598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MicroRNA-21 Blocks Abdominal Aortic Aneurysm Development and Nicotine-Augmented Expansion. Science Translational Medicine, 2012, 4, 122ra22.	5.8	255
2	miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nature Communications, $2014, 5, 5214$.	5.8	187
3	H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation, 2018, 138, 1551-1568.	1.6	169
4	Segmental Aortic Stiffening Contributes to Experimental Abdominal Aortic Aneurysm Development. Circulation, 2015, 131, 1783-1795.	1.6	113
5	Transcription Factor Runx2 Promotes Aortic Fibrosis and Stiffness in Type 2 Diabetes Mellitus. Circulation Research, 2015, 117, 513-524.	2.0	83
6	Dichloroacetate prevents restenosis in preclinical animal models of vessel injury. Nature, 2014, 509, 641-644.	13.7	78
7	Decoding the Genomics of Abdominal Aortic Aneurysm. Cell, 2018, 174, 1361-1372.e10.	13.5	68
8	<i>CDKN2B</i> Regulates <i>TGF</i> \hat{I}^2 Signaling and Smooth Muscle Cell Investment of Hypoxic Neovessels. Circulation Research, 2016, 118, 230-240.	2.0	52
9	Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling. Cardiovascular Research, 2012, 95, 147-155.	1.8	51
10	Chronic Nicotine Exposure Induces Murine Aortic Remodeling and Stiffness Segmentationâ€"Implications for Abdominal Aortic Aneurysm Susceptibility. Frontiers in Physiology, 2018, 9, 1459.	1.3	33
11	Systemic Upregulation of IL-10 (Interleukin-10) Using a Nonimmunogenic Vector Reduces Growth and Rate of Dissecting Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1796-1805.	1.1	33
12	Transcriptional profiling of in vitro smooth muscle cell differentiation identifies specific patterns of gene and pathway activation. Physiological Genomics, 2004, 19, 292-302.	1.0	26
13	Chromatin Remodeling Pathways in Smooth Muscle Cell Differentiation, and Evidence for an Integral Role for p300. PLoS ONE, 2010, 5, e14301.	1.1	26
14	Long noncoding RNAs in key cellular processes involved in aortic aneurysms. Atherosclerosis, 2020, 292, 112-118.	0.4	26
15	Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression. PLoS ONE, 2016, 11, e0149288.	1.1	24
16	Therapeutic perspective on vascular cognitive impairment. Pharmacological Research, 2019, 146, 104266.	3.1	21
17	Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Scientific Reports, 2015, 5, 9704.	1.6	19
18	Hyperlipidemia does not affect development of elastase-induced abdominal aortic aneurysm in mice. Atherosclerosis, 2020, 311, 73-83.	0.4	18

#	Article	IF	CITATIONS
19	Involvement of Myeloid Cells and Noncoding RNA in Abdominal Aortic Aneurysm Disease. Antioxidants and Redox Signaling, 2020, 33, 602-620.	2.5	9
20	<i>peri</i> -Adventitial delivery of smooth muscle cells in porous collagen scaffolds for treatment of experimental abdominal aortic aneurysm. Biomaterials Science, 2021, 9, 6903-6914.	2.6	7
21	Battle of the Bulge. Circulation Research, 2014, 115, 812-813.	2.0	5
22	Open surgery for iliofemoral deep vein thrombosis with temporary arteriovenous fistula remains valuable. Phlebology, 2018, 33, 600-609.	0.6	5
23	Non-coding RNAs in aneurysmal aortopathy. Vascular Pharmacology, 2019, 114, 110-121.	1.0	5
24	Controlled isoflurane anesthesia exposure is required for reliable behavioral testing in murine surgical models. Journal of Pharmacological Sciences, 2019, 140, 106-108.	1.1	5
25	MicroRNA miR-29b regulates diabetic aortic remodeling and stiffening. Molecular Therapy - Nucleic Acids, 2021, 24, 188-199.	2.3	5
26	New Ways to Dismantle a Ticking Time Bomb. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1339-1340.	1.1	4
27	Clinical outcomes after direct and indirect surgical venous thrombectomy for inferior vena cava thrombosis. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2019, 7, 333-343.e2.	0.9	4
28	Immunomodulation Therapy Using Tolerogenic Macrophages in a Rodent Model of Pulmonary Hypertension. Stem Cells and Development, 2021, 30, 515-525.	1.1	2
29	Response to Letters Regarding Article, "Segmental Aortic Stiffening Contributes to Experimental Abdominal Aortic Aneurysm Development― Circulation, 2016, 133, e11-2.	1.6	1
30	Abstract 255: Induction of microRNA-21 Inhibits Abdominal Aortic Aneurysm Development and Nicotine-Augmented Expansion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	1.1	0
31	Abstract 108: Diagnostic and Prognostic Biomarker Potential of miR-24 in Abdominal Aortic Aneurysm Disease and Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	1.1	0
32	Abstract 681: The Effects of a Sustained-Release N-acetylcysteine Prodrug on Vascular Inflammation in Experimental Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
33	Abstract 241: MicroRNA-24 Controls Macrophage Survival in Murine Abdominal Aortic Aneurysm Via Chi3l1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	O